CANNON BEACH COMMUNITY DEVELOPMENT 163 E. GOWER ST. PO BOX 368 CANNON BEACH, OR 97110 # **Cannon Beach Planning Commission** # Staff Report Addendum, (October 7th, End of Business): **CD 22-01 & CU 22-03**, David Vonada, on behalf of David Pietka, request for a Conditional Use Permit to allow a cluster development consisting of four single-family dwellings and a six-plex apartment building. The property is located on the southwest corner of 1st and Spruce St. (Tax Lot 04402, Map 51030AA) in a Limited Commercial (C1) Zone. The request will be reviewed under Cannon Beach Municipal Code, Titles 16 Subdivisions and 17 Zoning, including Sections 16.04.130 Subdivision-Applicable Standards, 16.04.400 Variance-Cluster Development, 17.22.030 Conditional Uses Permitted, and 17.43.040-050 Conditional Uses and Activities Permitted in Wetland and Wetland Buffer Areas, Standards. Agenda Date: October 27, 2022 Prepared By: Jeffrey S. Adams, PhD # **GENERAL INFORMATION** #### NOTICE Public notice for this October 27, 2022 Public Hearing is as follows: - A. Notice was posted at area Post Offices on October 7, 2022; - B. Notice was mailed on October 7, 2022 to surrounding landowners within 100' of the exterior boundaries of the property. # **DISCLOSURES** Any disclosures (i.e. conflicts of interest, site visits or ex parte communications)? ## **EXHIBITS** The following Exhibits are attached hereto as referenced. All application documents were received at the Cannon Beach Community Development office on July 5, 2022 unless otherwise noted. # "A" Exhibits - Application Materials - A-6 Ecola East Development, Site Plan, First and Spruce Streets, Revised Site Plan, A.1.1, Tolovona Architect, LLC, undated; - A-7 Geotech Report for Proposed Ecola Square Development, First and Spruce, Earth Engineers, Inc., dated March 31, 2022, revised April 18, 2022; - A-8 Tree Plan for First and Spruce Project, Todd Prager & Associates, LLC, dated September 21, 2022; ## "B" Exhibits – Agency Comments #### No new materials #### "C" Exhibits - Cannon Beach Supplements - **C-3** Proposed Draft Development Agreement, for Ecola Square East Affordable Housing, dated September 28, 2022; - C-4 HUD Clatsop County AMI Housing 2022 report; #### "D" Exhibits - Public Comment - **D-9** Cameron La Follette letter, via email, on behalf of Oregon Coast Alliance, dated and received, October 6, 2022; - **D-10** Susan Glarum letter, via email, dated and received, October 6, 2022; #### **REVISIONS & NEW MATERIALS** The applicant has provided a new site plan, tree report and geohazard report in response to the previous meeting. The application now proposes four single-family dwellings (each 1,190 SF), with one containing a 360 SF Accessory Dwelling Unit. The new plan also proposes a six-plex multifamily housing complex consisting of two 510 SF studio apartments and three 646 SF one-bedroom apartment and one 772 SF one-bedroom unit, for a total of ten dwellings, with a common access and shared parking area, consisting of thirteen parking spaces. The proposed pedestrian access to eight of the units is via an internal sidewalk system, with two of the units accessible via First Street. One of the one-bedroom apartment units is identified as ADA accessible. The parking standards of CBMC 17.78.020 require two spaces for each of the single-family dwellings, one space for each of the studio apartments and one and a quarter spaces for each of the four one-bedroom units, with one additional for the ADU, which equates to sixteen spaces required. The plans show thirteen parking spaces, the Cluster Variance would allow for a reduction or for the three spaces to be placed off-site. Staff has provided the Ecola Square East Affordable Housing Development Agreement based on the Sea Lark Development agreement that was approved in 2018, as the only other 'affordable' or 'workforce' housing development in the City of Cannon Beach, since the passage of the construction excise tax ordinance. A copy of the Clatsop County Area Median Income limits from HUD are also included for consideration. The Todd Prager & Associates Tree Report, dated September 21, 2022, recommends the retention of 23 trees, 12 within the site boundaries and 11 in the adjacent right-of-way, while 14 trees are recommended for removal. Project arborist oversight is required at excavation, along with TPZ fencing and geotextile and wood-chip compaction zones to assure the safety of the trees to be saved during construction. The Earth Engineers Geotech Report, revised April 18, 2022, recommends 10 to 12 inch helical piers to be planned for lengths of 45 to 50 feet. As with most geohazard reports for structures in Cannon Beach, the site has the presence of weak, compressible, potentially liquefiable and expansive soils, with the presence of organics and shallow groundwater. As a result, the recommendations call for 80 steel pipe piles driven to practical refusal, with the cautionary warning that with the amount of heavy organics depths of pilings should reach over 40 feet. The City Building Official will require all structural plans meet Oregon Building requirements. The Draft of the Proposed Ecola Square East Affordable Housing Development Agreement provides for two studio apartments and six one-bedroom, held to an 80% AMI, for a period of thirty years. The City of Cannon Beach in return would waive all building fees and system development charges. The Development Agreement is based on the 2018 SeaLark agreement and provides the basics for the City Council to work with the applicant on the details to provide the City more 'affordable' or 'workforce' housing. #### PROCEDURAL REQUIREMENTS This application is subject to ORS 227.178, requiring the City to take final action within 120 days after the application is deemed complete. The application was submitted on July 5, 2022 and determined to be complete on July 8, 2022. The applicant provided a written request to extend the 120-day deadline by sixty days to January 4, 2023, by which time the City is required to have a final decision. The Planning Commission held a hearing on this matter on August 25, 2022. At that time, it closed the hearing, but left the record open consistent with ORS 197.763 for additional evidence. The applicant has now requested that the public record be re-opened to allow new evidence for CD 22-01 & CU 22-03, the Planning Commission granted the request to reopen the record. The Planning Commission will accept new written testimony and evidence for an additional fourteen days, from today, September 23rd, to 5:00 PM, October 7th, with a second period allowing for responsive evidence accepted until 5:00 PM, October 14th and final written argument by the applicant only, 5:00 PM, October 21st. The Planning Commission will then commence deliberations at its meeting on Thursday October 27, 2022. #### RECOMMENDATION Staff recommends approval with the following conditions. #### **DECISION AND CONDITIONS** Initial Motion: Having considered the evidence in the record, based on a motion by Commissioner (Name) seconded by Commissioner (Name), the Cannon Beach Planning Commission moves to (approve/approve with conditions/or deny) the Davidspruce LLC application for a seven-lot Cluster Development Subdivision, CD#22-01, for four single-family residential lots, one multi-family lot and two common space lots, through a Cluster Development Variance, (providing the following exceptions): - 1. Shared off-street parking variance request for 13 spaces located on Lot 1 and three off-site; - 2. Shared lot access and lot frontage on Lot 1; and, **Second Motion:** Having considered the evidence in the record, based on a motion by Commissioner (Name) seconded by Commissioner (Name), the Cannon Beach Planning Commission moves to (approve/approve with conditions/or deny) the Davidspruce LLC application for a Conditional Use permit for a Cluster Development Subdivision in the Wetland Overlay zone, CU#22-02, as discussed at this public hearing (subject to the following conditions): - 1. Development agreement containing 'affordable' or 'workforce housing' requirements, approved by City Council and recorded with Clatsop County; - 2. Formation of a Home Owners Association, with Covenants, Conditions & Restrictions, describing shared access, parking and common space maintenance agreements, approved by City Council and recorded with Clatsop County, - 3. Soils and Geohazard Report approved by the City Building Official prior to construction; - 4. Tree removal application, including TPZ protection measures and on-site arborist oversight during excavation, reviewed by the City Arborist and approved by the City, prior to construction; - 5. Plat note indicating no intrusions within the delineated wetland area and buffer areas, including accessory structures, fencing or pedestrian or vehicular use; - 6. Plat note stating no future partition or subdivision permitted; # Notice of Approval ## 17.44.140 Final approval expiration. | The final approval of a design review permit has been obtained. (Ord. 90-3 § 2 | olan shall be void after o
15) | ne year of the date of ap | proval unless a building | |--|-----------------------------------|---------------------------|--------------------------| , | | | | | | | | # Site Map | • | | | |---|--|--| | | | | | | | | # **NEW MATERIALS** ## FIRST STREET 2411 Southeast 8th Avenue • Camas • WA 98607 Phone: 360-567-1806 www.earth-engineers.com March 31, 2022 Revised April 18, 2022 Red Crow, LLC Phone: (503) 849-0258 P.O. Box 825 E-mail: jamie@redcrowgc.com Cannon Beach, Oregon 97110 Attention: Jamie Lerma, President Subject: Geotechnical Investigation Report **Proposed Ecola Square Development**
Southwest Corner of First Street and Spruce Street Clatsop County Tax Lot No. 51030AA04402 Cannon Beach, Clatsop County, Oregon EEI Report No. 22-039-1-R1 Dear Mr. Lerma, Earth Engineers, Inc. (EEI) is pleased to transmit our *revised* report for the above referenced project. This report includes the results of our field investigation, an evaluation of geotechnical factors that may influence the proposed construction, and geotechnical recommendations for the proposed structure and general site development. *This report has been revised to include helical pier recommendations, as requested. Report revision additions are denoted in bold, italics.* We appreciate the opportunity to perform this geotechnical study and look forward to continued participation during the design and construction phases of this project. If you have any questions pertaining to this report, or if we may be of further service, please contact our office. Sincerely, Earth Engineers, Inc. Troy Hull, P.E., G.E. Principal Geotechnical Engineer I goull Jacqui Boyer Geotechnical Engineering Associate Attachment: Geotechnical Investigation Report Distribution (electronic copy only): Addressee ## **GEOTECHNICAL INVESTIGATION REPORT** for the Proposed Ecola Square Development Southwest Corner of First Street and Spruce Street Clatsop County Tax Lot No. 51030AA04402 Cannon Beach, Clatsop County, Oregon Prepared for Red Crow, LLC P.O. Box 825 Cannon Beach, Oregon 97110 Attention: Jamie Lerma, President Prepared by Earth Engineers, Inc. 2411 Southeast 8th Avenue Camas, Washington 98607 Telephone (360) 567-1806 EEI Report No. 22-039-1-R1 March 31, 2022 Revised April 18, 2022 Jake Jacqui Boyer Geotechnical Engineering Associate Troy Hull, P.E., G.E. Principal Geotechnical Engineer # **TABLE OF CONTENTS** | | | Page No. | |--|---|----------------------------| | 1.0 PROJECT INF | FORMATION | 1 | | 1.2 Project Des | chorizationscriptiond Scope of Services | 1 | | 2.0 SITE AND SU | JBSURFACE CONDITIONS | 4 | | 2.2 Mapped Soi
2.3 Subsurface
2.4 Groundwate
2.5 Seismicity | on and Description pils and Geology Materials er Information action | 7
9 | | 3.0 EVALUATION | N AND FOUNDATION RECOMMENDATIONS | 12 | | 3.2 Site Prepara 3.3 Structural F 3.4 Foundation 3.4.1 Pin Pile 3.4.2 Helical 3.5 Floor Slab F 3.6 Retaining W | cal Discussion ration | 13
14
14
14
15 | | 4.0 CONSTRUCT | TION CONSIDERATIONS | 19 | | 4.2 Drainage ar | ensitive Soils/Weather Related Concerns
and Groundwater Considerationss | 19 | | 5.0 REPORT LIM | NITATIONS | 21 | | APPENDICES: | Appendix A – Site Location Plan Appendix B – Exploration Location Plan Appendix C – Exploration Logs Appendix D – Soil Classification Legend Appendix E – Report of Atterberg Limit Testing Appendix F – Nearby Historic Well Log Appendix G – LiquefyPro Output Appendix H – Surcharge-Induced Lateral Earth Pressures for W | /all Design | #### **1.0 PROJECT INFORMATION** # 1.1 Project Authorization Earth Engineers, Inc. (EEI) has completed a geotechnical investigation report for the proposed development on Clatsop County Tax Lot No. 51030AA04402 in Cannon Beach, Clatsop County, Oregon. Our services were authorized by Jamie Lerma with Red Crow, LLC on February 8, 2022 by signing EEI Proposal No. 22-P054 dated February 7, 2022. ## 1.2 Project Description Our current understanding of the project is based on the information Mr. Lerma provided to EEI Principal Geotechnical Engineer Troy Hull. We were also provided the following document via email: Plat Map titled "Ecola Square Condominiums" prepared by HLB Otak, dated April 30, 2007. This map shows the subject property boundaries with respect to the neighboring building and surrounding streets. See Figure 1 below. Briefly, we understand the project consists of developing one of three options on the property: - 1. Six to seven 2-story single family residences, or - 2. 16-18 unit, 2-story apartment complex, or - 3. 4,200 square foot, 2-story commercial building. We have not been provided any detailed construction plans for the project. For the purposes of this report, we are assuming maximum foundation loads of 5 kips per linear foot for wall footings, 50 kips for column footings, and 150 psf for floor slabs. With regard to design grades, we are assuming that cuts and fills will be negligible (i.e. less than 2 feet). Finally, we have assumed that the buildings will be constructed in accordance with the 2021 Oregon Residential Specialty Code (ORSC), or the 2019 Oregon Structural Specialty Code (OSSC). **Figure 1:** Plat map referenced above showing the project vicinity. The subject property is outlined in blue. ## 1.3 Purpose and Scope of Services The purpose of our services was to explore the subsurface conditions at the site to better define the soil, rock, and groundwater properties in order to provide geotechnical related recommendations related to the proposed construction. Our site investigation consisted of advancing two Standard Penetration Test (SPT) borings (B-1 and B-2) located on the subject property using a B-58 truck rig subcontracted from PLi Systems of Hillsboro, Oregon. SPT samples were taken at regular intervals and transported to our laboratory for testing. Laboratory testing was accomplished in general accordance with ASTM procedures. This report briefly outlines the testing procedures, presents available project information, describes the site, assumed subsurface conditions, and presents recommendations regarding the following: - A discussion of subsurface conditions encountered including pertinent soil and groundwater conditions. - Seismic design parameters in accordance with ASCE 7-16. - Geotechnical related recommendations for deep foundation design. - Structural fill recommendations, including an evaluation of whether the in-situ soils can be used as structural fill. - Retaining wall design parameter recommendations, including coefficient of friction and earth pressures. - Floor slab support recommendations. - Pavement section thickness recommendations based on an assumed CBR value, as well as assumed traffic loading conditions unless provided to us by the project Civil Engineer. - Other discussion on geotechnical issues that may impact the project. It should be noted, our scope of services does not include a Geologic Hazard Assessment to satisfy Clatsop County. If required, we can modify our scope to include this service. ## 2.0 SITE AND SUBSURFACE CONDITIONS # 2.1 Site Location and Description The site for the proposed development is located at Clatsop County Tax Lot No. 51030AA04402 in Cannon Beach, Oregon. The site is bound to the north by East 1st Avenue, to the east by North Spruce Street, to the south by a vacant property, and to the west by a commercial development. See Figure 2 below for project vicinity. **Figure 2:** Project vicinity showing the subject property (outlined in blue). Source: https://delta.co.clatsop.or.us/apps/ClatsopCounty/. The subject property is currently vacant. The majority of the property consists of a gravel pad. The western property line runs along the parking lot for the adjacent development. The eastern property line is vegetated with brush, trees and a drainage ditch. In terms of topography, the subject property is level. While on site, we did not observe any signs of soil movement (i.e. cracking in the soil, leaning trees, landscape head scarps etc.). See Photos 1 through 4 below for the current site conditions. **Photo 1:** Current site conditions, taken from the northern property line facing south. The drill rig is set up at B-2. **Photo 2:** Current site conditions, taken from the southwestern property corner facing northeast. The drill rig is set up at B-2. Photo 3: Current site conditions, taken from the middle of the property facing south. **Photo 4:** Current site conditions along the eastern property line showing the drainage ravine, facing south. #### 2.2 Mapped Soils and Geology The underlying geology mapped in the area of the subject property is Miocene aged marine sedimentary rocks of the Astoria Group. This unit is described as "marine sandstone and siltstone, including shelf, slope channel, deltaic and turbidite sandstone, and slope mudstone. Pleistocene aged marine terrace deposits (Qmt) and Pleistocene and Holocene aged stable sand dunes (sd)¹. The United States Department of Agriculture (USDA) Soil Survey provides geographical information of the soils in Clatsop County as well as summarizing various properties of the soils. The USDA shows the native soils on the property mapped as Unit 12A: Coquille-Clatsop complex on 0 to 1 percent slopes. This very poorly drained soil is formed on flood plains derived from mixed alluvium. A typical profile consists of silt loam overlying silty clay². A review of the Oregon Department of Geology and Mineral Industries (DOGAMIs) Statewide Geohazards Viewer (HazVu) indicated that the subject property is within a severe earthquake hazard zone, a severe Cascadia earthquake shaking hazard zone, and a high liquefaction hazard zone. The database does not map the subject property within a landslide hazard area or in proximity to any mapped historic landslides. #### 2.3 Subsurface Materials The site was explored with two SPT borings (B-1 and B-2). Both borings were advanced on the gravel pad. For approximate exploration locations see the Exploration Location Plan in Appendix B. The SPT borings were advanced with a subcontracted B-58 truck rig from PLi Systems of Hillsboro, Oregon. Using mud rotary drilling techniques, both
borings were advanced to a depth of 51.5 feet below ground surface (bgs). SPT samples were generally taken at regular intervals within the boring and transported to our laboratory for testing. Select soil samples were tested in the laboratory to determine material properties for our evaluation. Results of the drilled borings are reported in the Exploration Logs in Appendix C. Laboratory testing was accomplished in general accordance with ASTM procedures. The testing performed included moisture content tests (ASTM D 2216), fines content determinations (ASTM D1140) and Atterberg limit testing (ASTM D4318). The test results have been included on the Exploration Logs in Appendix C and the Report of Atterberg Limits Testing in Appendix E. In general, we encountered a surficial layer of fill overlying coarse-grained soils overlying finegrained soils which extended to the terminal depths of our explorations. Each individual stratum encountered is discussed in further detail below. ¹ Niem, A.R., and Niem, W., 1985, Geologic map of the Astoria Basin, Clatsop and northernmost Tillamook Counties, northwest Oregon: Portland, Oreg., Oregon Dept. of Geology and Mineral Industries Oil and Gas Investigation Map OGI-14, Plate 1, scale 1:100,000. ² Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Web Soil Survey. Available online at http://websoilsurvey.nrcs.usda.gov/ accessed April 1, 2022. # **FILL SOILS** In both of our explorations, we encountered fill as the surficial layer. The fill stratum was generally brown gravel with little silt. We also encountered rootlets in this stratum. Laboratory testing on a sample obtained within this stratum yielded a moisture content of 9 percent and fines content of 10 percent passing the #200 sieve. Based on SPT sampling data, this stratum was medium dense. The thickness of this stratum was 2.5 feet in B-1 and 6-inches in B-2. #### COARSE-GRAINED SOILS In both of our exploration, we encountered coarse-grained soils underlying the surficial fill layer described above. This stratum was generally a brown to gray sand with variable amounts of silt. We also encountered heavy organics within this stratum (i.e. wood debris, wood chips, rootlets). Laboratory moisture content testing on samples obtained within this stratum ranged from 22 to 351 percent. It should be noted the very high moisture readings are likely due to the presence of organics and/or ash. Fines content laboratory testing for a sample obtained within this stratum yielded a result of 1 percent passing the #200 sieve. Based on SPT sampling data, this stratum ranged from very loose to medium dense; however, we generally consider this stratum to be loose (N_{60} average of 10). This sand stratum extended to a depth of 10 feet bgs in both of our explorations. #### **FINE-GRAINED SOILS** In both of our borings, we encountered fine-grained soils underlying the sandy layer described above. The upper portion of this stratum was a gray to brown high plasticity silt with varying amounts of sand. We also encountered heavy organics (i.e. wood debris, wood chips, rootlets), and veins of blue-gray sand within this stratum. Laboratory moisture content testing on samples obtained within this stratum ranged from 34 to 252 percent. It should be noted the very high moisture readings are likely due to the presence of organics and/or ash. Fines content laboratory testing for samples obtained within this stratum ranged from 43 to 99 percent passing the #200 sieve. We also conducted Atterberg testing on samples retrieved within this stratum from B-1 at 10 feet bgs and 15 feet bgs. The testing indicated this stratum is a high plasticity silt (MH). Based on SPT sampling data, this stratum ranged from very soft to very stiff; however, we generally consider this stratum to be very soft (N₆₀ average of 2). This very soft silt stratum extended to a depth of 40 feet bgs in both of our explorations. At a depth of approximately 40 feet bgs, there were no more organics present in the samples obtained and the soil became much stiffer. This stratum was generally gray to blue-gray to brown silt with sand and gravel. Laboratory moisture content testing on samples obtained within this stratum ranged from 9 to 39 percent, indicating a dry to wet condition. Based on SPT sampling data, this stratum ranged from stiff to hard; however, we generally consider this stratum to be hard (N₆₀ average of 42). This stratum extended to the terminal depths of our explorations (i.e. 51.5 feet bgs). The classifications noted above were made in general accordance with the USCS as shown in Appendix D. The above subsurface description is of a generalized nature to highlight the major subsurface stratification features and material characteristics. The exploration logs included in the Appendix should be reviewed for specific information. These records include soil descriptions, stratifications, and locations of the samples. The stratifications shown on the logs represent the conditions only at the actual exploration location. The fill extent at the exploration locations was estimated based on an examination of the soil samples, the presence of foreign materials, field measurements, and the subsurface data. The exploration performed is not adequate to accurately identify the full extent of existing fill across the site. Consequently, the actual fill extent may be much greater than that shown on the exploration logs and discussed herein. Variations may occur and should be expected across the site. The stratifications represent the approximate boundary between subsurface materials and the actual transition may be gradual. Water level information obtained during field operations is also shown on these logs. The samples that were not altered by laboratory testing will be retained for 90 days from the date of this report and then will be discarded. #### 2.4 Groundwater Information During our subsurface investigation, we were not able to identify the depth to groundwater due to the drilling method used (i.e. mud rotary). It should be noted, standing water was observed in the drainage ditch that is located along the eastern property line approximately 4 feet below the elevation of our borings. In addition, we reviewed publicly available well logs from the Oregon Water Resources Department website (http://apps.wrd.state.or.us/apps/gw/well_log/) for historic information. We found two historical logs for a property located approximately 0.2 miles southwest of the subject property, advanced on December 13, 2002. The logs indicate that groundwater was encountered at a depth of 3 feet below ground surface. See Appendix F for a copy of these well log reports. It should be noted that groundwater elevations can fluctuate seasonally and annually, especially during periods of extended wet or dry weather, or from changes in land use. #### 2.5 Seismicity In accordance with ASCE 7-16, we recommend a Site Class E (soft soil with an average standard penetration resistance less than 15 blows per foot) when considering the average of the upper 100 feet of bearing material beneath the proposed foundations. This recommendation is based on the SPT N-values in our boring B-1 and our local knowledge of the area geology. Inputting our recommended Site Class as well as the site latitude and longitude into the Structural Engineers Association of California (SEAOC) – OSHPD Seismic Design Maps website (http://seismicmaps.org) which is based on the United States Geological Survey, we obtained the seismic design parameters shown in Table 1 below. Note that the values for F_a and F_v in Table 1 were obtained from ASCE's Supplement 3 dated November 5, 2021 and issued for ASCE 7-16 to correct some seismic design issues in the original publication. **Table 1:** Seismic Design Parameter Recommendations (ASCE 7-16, including Supplement 3 dated November 5, 2021) | PARAMETER | RECOMMENDATION | |--|----------------| | Site Class | E | | Ss | 1.316g | | S ₁ | 0.691g | | Fa | 1.200 | | F _v | 2.000 | | S _{MS} (=S _s x F _a) | 1.579g | | S_{M1} (= $S_1 \times F_v$) | 1.382g | | S_{DS} (=2/3 x S_s x F_a) | 1.053g | | S _{D1} (=2/3 x S ₁ x F _V) | 0.921g | | Design PGA (=S _{DS} / 2.5) | 0.421g | | MCE _G PGA | 0.663g | | F _{PGA} | 1.100 | | PGA _M (=MCE _G PGA * F _{PGA}) | 0.730g | Note: Site latitude = 45.8961, longitude = -123.9601 The return interval for the ground motions reported in the table above is 2 percent probability of exceedance in 50 years. Per Section 11.4.8 of ASCE 7-16 a site-specific ground motion hazard analysis shall be performed in accordance with Section 21.2 for the following conditions: 1. Structures on Site Class D sites with S₁ greater than or equal to 0.2g. Exception: ASCE 7-16 does not require a site-specific ground motion hazard analysis when the value of S_{M1} is elected to be increased by 50% for all applications of S_{M1} by the Structural Engineer. If S_{M1} is increased by 50% to avoid having to perform the seismic response analysis, then the resulting value of S_{D1} shall be equal to $2/3 * [1.5*S_{M1}]$) 2. Structures on Site Class E sites with values of S_s greater than or equal to 1.0, or values of S_1 greater than or equal to 0.2. Exception: ASCE 7-16 does not require a site-specific ground motion hazard analysis when: - 1. The Structural Engineer uses the equivalent lateral force design procedure and the value of Cs is determined by Eq. 12.8-2 for all values of T, or - 2. Where (i) the value of S_{ai} is determined by Eq. 15.7-7 for all values of T_i , and (ii) the value of the parameter S_{D1} is replaced with 1.5* S_{D1} in Eq. 15.7-10 and 15.7-11. We classified this site as Site Class E. Because the S_s value is greater than 1.0 as shown in
Table 1 above, a ground motion hazard analysis is required unless the Structural Engineer elects to increase the S_{M1} value by 50 percent (which results in increasing the S_{D1} value by 50 percent). If the Structural Engineer elects not to utilize the 50 percent increase on S_{M1} and S_{D1} , then EEI should be retained to perform a site-specific ground motion hazard analysis in accordance with Section 21.2 of ASCE 7-16. #### 2.6 Soil Liquefaction Liquefaction occurs when a saturated sand or silt soil starts to behave like a liquid. Liquefaction occurs because of the increased pore pressure and reduced effective stress between solid particles generated by the presence of liquid. It is often caused by severe ground shaking, especially that associated with earthquakes. For the purpose of our hazard evaluation, we consider only the saturated soils within the upper 50 feet of the ground surface to be potentially liquefiable. The liquefaction potential was evaluated based on the SPT N₆₀-values. Based on this criteria, and assuming a groundwater level as high as 3 feet below existing grade, we consider potentially liquefiable soils to be present between a depth of 3 feet and 50 feet below existing grade. We performed a detailed liquefaction analysis using Liquefy Pro, version 5.8n software distributed by CivilTech Software. The following input parameters were used: - A Peak Ground Acceleration (PGA_M) of 0.730g. - A moment magnitude earthquake of 8.9. - Groundwater was assumed to be 3 feet bgs at the time of the seismic event. - C_e (SPT hammer energy correction) value of 1. - C_b (borehole diameter correction) value of 1.05. - C_s (sampler correction) value of 1. - Ishihara/Yoshimine settlement calculation method. - Modified Stark/Olson fines correction method. - We assumed an acceptable Factor of Safety (FOS) of 1.3 for liquefaction triggering. As indicated above, a safety factor of 1.3 was used when evaluating whether a soil would liquefy or not (i.e. soil layers below a safety factor of 1.3 are considered potentially liquefiable). Based on the above parameters as well as the subsurface information from B-1 and B-2, we calculated that approximately 16-inches of potential total dynamic settlement due to liquefaction could occur during a design level event. We estimate differential dynamic settlement due to liquefaction could be on the order of 50 to 75 percent of the total dynamic settlement; meaning anywhere from approximately 8- to 12-inches of differential settlement due to liquefaction could occur across the building footprint. A summary presentation of our LiquefyPro analysis is attached in Appendix G. #### 3.0 EVALUATION AND FOUNDATION RECOMMENDATIONS # 3.1 Geotechnical Discussion Based on our site reconnaissance, it is our professional opinion that the primary factors impacting the proposed development include the following: - 1. Presence of weak, compressible soils As discussed above, we encountered compressible soils to a depth of 40 feet bgs. The upper portion of the weak soils was very loose to medium dense sand with an N₆₀ average of 10 (i.e. generally loose). Underlying the sandy soils, we encountered very soft to very stiff silt with an N₆₀ average of 2 (i.e. generally very soft). It is our professional opinion that these compressible soils are not sufficient for shallow foundation support. As such, we recommend all foundations penetrate through these variable soils to bear on the stiff to hard silt. See Section 3.5 below for detailed deep foundation recommendations (i.e. pin piles *or helical piers*). - 2. Presence of potentially liquefiable soils As stated above, there are potentially liquefiable soils located at the project site. Based on our analysis, approximately 16-inches of total dynamic settlement due to liquefaction could occur with potential differential settlements up to about 8-inches across the proposed building's footprint. This much settlement precludes the use of shallow foundations. As stated above, we are recommending deep foundations for the proposed development that will mitigate risk of settlement in an earthquake level event. - 3. Presence of organics As stated above, we encountered heavy organics (i.e. wood debris) in both of our explorations. The presence of organics extended to depths of 40 feet bgs. It is our professional opinion that this material is not sufficient to provide shallow foundation support without risking excess total and differential settlements. As such, we are providing deep foundation recommendations that penetrate through these organic soils to bear on the very stiff to hard soils encountered at a depth of approximately 40 feet bgs. In addition, this material is unsuitable for structural fill. - 4. Presence of potentially expansive soils Based on our Atterberg limits lab test results, we encountered potentially moderately expansive silt soils at a depth of approximately 10 feet bgs. Expansive soils are extremely moisture sensitive and cause a higher risk of differential movement. Since we encountered these moderately expansive silt soils 10 feet below the existing ground surface, they are not expected to experience changes in their moisture contents over time. As such, the at-grade elements will not be affected by the potentially expansive soils. However, if site grading includes any major cuts within the building footprint (i.e. cuts greater than 10 feet below the existing ground surface), we should be notified so that we can modify our recommendations to include mitigating the risk of expansive soils that could negatively impact the proposed development. - 5. Shallow groundwater As previously mentioned, we anticipate shallow groundwater across the subject property. Although we could not characterize the depth to groundwater due to the drilling method used (i.e. mud rotary), we observed standing water in the drainage ditch along the eastern property line. In addition, nearby well logs indicate that a static water level is as shallow as 3 feet bgs. If any excavations are greater than 3-feet, the contractor should anticipate the need to dewater. The need to dewater can be lessened if the construction occurs in the dry summer and early fall months. Detailed dewatering design is typically left up to the contractor's means and methods, and is not part of our current scope of services. - 6. Lack of detailed design drawings Given this project is in its preliminary stages, we have not been provided with a detailed design drawing set for the proposed construction. Once the drawings for the project are complete, we should review those drawings to determine if the design complies with our recommendations or if our recommendations need to be modified. In summary, this site appears to be developable provided our geotechnical engineering recommendations are followed. # 3.2 Site Preparation Minimal site preparation will be required to install the piles. Any utilities present beneath the proposed construction will need to be located and rerouted as necessary and any abandoned pipes or utility conduits should be removed to inhibit the potential for subsurface erosion. Utility trench excavations should be backfilled with properly compacted structural fill as discussed in Section 3.3 below. #### 3.3 Structural Fill Any structural fill placed should be granular, free of organic or other deleterious materials, have a maximum particle size less than 3 inches, be relatively well graded, and have a liquid limit less than 45 and plasticity index less than 25. In our professional opinion, on-site soils are **not** appropriate for use as fill due to the presence of organics. As such, we recommend importing granular, well graded, crushed rock structural fill. Typically, we recommend fill be moisture conditioned to within 3 percentage points below and 2 percentage points above optimum moisture as determined by ASTM D1557 (Modified Proctor). If water must be added, it should be uniformly applied and thoroughly mixed into the soil by disking or scarifying. Fill should be placed in a relatively uniform horizontal lift on the prepared subgrade. Each loose lift should be about 1 foot. The type of compaction equipment used will ultimately determine the maximum lift thickness. Structural fill should be compacted to at least 95 percent of the Modified Proctor maximum dry density as determined by ASTM D1557. Each lift of compacted engineered fill should be tested by a representative of the Geotechnical Engineer prior to placement of subsequent lifts. The fill should extend horizontally outward beyond the exterior perimeter of the building and pavements at least 5 feet, prior to sloping. ## 3.4 Foundation Recommendations #### 3.4.1 Pin Pile Recommendations Once the site has been prepared, we recommend the proposed building be supported by 6-inch diameter, schedule 80 steel pipe piles driven to practical refusal using a hydraulic 2,000-pound hammer or equivalent. We also recommend the pin piles all be connected by an integrated, gridded system of rigid grade beams. Refusal for a 6-inch diameter pipe pile using a hammer of this size should be defined as less than 1-inch of penetration in 10 seconds or more. When practical, this refusal criteria should be met for the last 60 seconds of pile driving. Assuming the piles are driven to refusal using these criteria, the allowable axial capacity for a pile installed vertically would be 30 kips in compression. This allowable axial capacity assumes a factor of safety of 2.0. We recommend a maximum lateral load resistance of 1.0 kip for each vertical pile as long as they are spaced a distance of at least 6D (measured from center to center) where D represents the diameter of the pile. If additional lateral load resistance is needed, we can provide battered pile recommendations. Based on the known subsurface conditions we anticipate that properly constructed pin pile foundations driven to refusal will experience static settlements on the
order of 1-inch and 1/2-inch of total and differential settlement, respectively. We estimate that the average pile driving refusal depth will be encountered at approximately 40 to 50 feet bgs. #### 3.4.2 Helical Pier Recommendations As requested, we are providing helical pier recommendations for the subject site to minimize noise disturbance. It should be noted that helical piers can hit shallow refusal due to subsurface obstructions (i.e. rocks and/or debris). We encountered wood debris in our explorations, which slowed down the drilling. As such, the contractor should anticipate the need to put in additional effort to get through the debris. We recommend galvanized round shaft helical piers with 10- and 12-inch diameter double helices. The helical piers should be installed so that the helix is embedded into the stiff to hard silt encountered at a depth of 40 feet bgs in both of our explorations. In order to achieve the design loads outlined below, the helix needs to be embedded at least 1 foot. For preliminary budgeting purposes, we recommend the helical piers be planned for lengths of 45 to 50 feet. We have calculated that the recommended stiff to hard silt stratum encountered at about 40 feet in our explorations can achieve a maximum ultimate load of 126 kips. Applying a FOS of 2 results in a maximum allowable compressive capacity of 63 kips. We anticipate that a shaft diameter of 5.5 inches would be necessary to utilize 63 kips. Given, 2-7/8 inch diameter round shaft helical piers are more common, we are also providing the following recommendations. The 2-7/8-inch diameter helical piers are typically manufactured to have a maximum axial compressive load capacity of 80 kips. Applying a FOS of 2, the piers can be designed for an allowable load capacity of 40 kips. If greater load capacity is needed, a larger shaft diameter should be selected. In order to use a FOS of 2, at least one helical pier should be load tested. Any helical piles installed vertically (i.e. not battered) may be designed for an allowable lateral load of 1 kip. If additional lateral loads are required the piles should be battered to achieve the necessary loads. To utilize the fully recommended capacity, the helical piers should be laterally spaced no closer than 3 pier diameters, measured center to center (i.e. 3 feet for a piers with a 12-inch lead helical). EEI should be scheduled to be on site when each helical pier is installed to inspect the installation and verify our recommendations are met. # 3.5 Floor Slab Recommendations For the purposes of this report, we have assumed that maximum floor slab loads will not exceed 150 psf. Based on the existing soil conditions, the design of the floor slab can be based on a subgrade modulus (k) of 100 pci. This subgrade modulus value represents an anticipated value which would be obtained in a standard in-situ plate test with a 1-foot square plate. Use of this subgrade modulus for design or other on-grade structural elements should include appropriate modification based on dimensions as necessary. In order to fully mitigate the risk of settlement, the concrete floor slab would need to be tied into the grade beams and supported on the *deep foundation elements* recommended above (i.e. designed as a structural floor slab). However, if a conventional, less expensive floor slab-on-grade is preferred, to at least partially mitigate the risk of potential settlement, the floor slab should be supported on at least 12-inches of properly compacted crushed rock gravel structural fill overlying the existing soils. The structural fill recommendations are outlined in Section 4.3 above. The floor slabs should have an adequate number of joints to reduce cracking resulting from any differential movement and shrinkage. Prior to placing the structural fill, the exposed subgrade surface should be prepared as discussed in Section 3.2. In addition, we recommend a proof-roll utilizing a fully loaded, dual axle dump truck or water truck in order to identify any unstable areas that should be removed prior to structural fill placement. The proofroll should be observed by a representative of the Geotechnical Engineer. If the subgrade cannot be accessed with a dump truck, then the subgrade will need to be visually evaluated by a representative of the Geotechnical Engineer by soil probing. If fill is required, the structural fill should be placed on the prepared subgrade after it has been approved by the Geotechnical Engineer. The 12-inch thick crushed rock structural fill should provide a capillary break to limit migration of moisture through the slab. If additional protection against moisture vapor is desired, a moisture vapor retarding membrane may also be incorporated into the design. Factors such as cost, special considerations for construction, and the floor coverings suggest that decisions on the use of vapor retarding membranes be made by the project design team, the contractor and the owner. #### 3.6 Retaining Wall Recommendations As stated above, the project is currently in its preliminary stages. As such, we have not been made aware of any proposed retaining walls. Once more detailed plans are known about retaining walls (if any), we should be provided the drawings so that we can update our recommendations as necessary. For the purposes of this report, we have assumed that no walls will be greater than 10 feet tall. Retaining wall footings should be designed in general accordance with the recommendations contained in Section 4.4 above (i.e. pin piles *or helical piers*). For insignificant landscape retaining walls not greater than 4 feet tall, where excessive wall movement due to ground movement is acceptable and not a risk to life-safety, they may be supported on conventional shallow foundations designed for an allowable soil bearing capacity of up to 1,500 pounds per square foot. Lateral earth pressures on walls, which are not restrained at the top, may be calculated on the basis of an "active" equivalent fluid pressure of 35 pcf for level backfill, and 60 pcf for sloping backfill with a maximum 2H:1V slope. Lateral earth pressures on walls that are restrained from yielding at the top (i.e. stem walls) may be calculated on the basis of an "at-rest" equivalent fluid pressure of 55 pcf for level backfill, and 90 pcf for sloping backfill with a maximum 2H:1V slope. The stated equivalent fluid pressures do not include surcharge loads, such as foundation, vehicle, equipment, etc., adjacent to walls, hydrostatic pressure buildup, or earthquake loading. Surcharge loads on walls should be calculated based on the attached calculations/formulas shown in Appendix H. We recommend that retaining walls be designed for an earth pressure determined using the Mononobe-Okabe method to mitigate future seismic forces. Our calculations were based on one-half of the Design Peak Ground Acceleration (PGA) value of 0.421g, which was obtained from Table 1 above. We have assumed that the retained soil/rock will have a minimum friction angle of 29 degrees and a total unit weight of about 115 pounds per cubic foot. For seismic loading on retaining walls with level backfill, new research indicates that the seismic load is to be applied at 1/3 H of the wall instead of 2/3 H, where H is the height of the wall³. We recommend that a Mononobe-Okabe earthquake thrust per linear foot of 14.3 psf * H² be applied at 1/3 H, where H is the height of the wall measured in feet. Note that the recommended earthquake thrust value is appropriate for slopes behind the retaining wall of up to 10 degrees. Any minor amount of backfill for retaining walls should be select granular material, such as sand or crushed rock with a maximum particle size between $\frac{3}{4}$ and 1 $\frac{1}{2}$ inches, having less than 5 percent material passing the No. 200 sieve. As stated above, the onsite soils do not meet the requirement for structural fill, and it will be necessary to import material to the project for structure backfill. Silty soils can be used for the last 18 to 24 inches of backfill, thus acting as a seal to the granular backfill. All backfill behind retaining walls should be moisture conditioned to within ± 2 percent of optimum moisture content, and compacted to a minimum of 92 percent of the material's maximum dry density as determined in accordance with ASTM D1557. Fill materials should be placed in layers that, when compacted, do not exceed about 8 inches. Care in the placement and compaction of fill behind retaining walls must be taken in order to ensure that undue lateral loads are not placed on the walls. #### 4.7 Pavement Recommendations After the site has been stripped and prepared as described above, the pavement subgrade should be heavily recompacted with a large roller and proofrolled with a fully loaded dual axle dump truck and then covered with gravel structural fill the same day. Areas found to be soft or yielding under the weight of a dump truck should be overexcavated as recommended by the Geotechnical Engineer's representative and replaced with additional crushed rock gravel fill. The pavement section thickness recommendations presented in Tables 2 and 3 below are considered typical and minimum for the assumed parameters. In order to achieve the assumed 20-year design life, pavement does need regular maintenance to protect the underlying subgrade from being damaged. The primary concern is subgrade water saturation which can cause it to weaken. Proper site drainage should be maintained to protect pavement areas. In addition, cracks that develop in the pavement should be sealed on a regular basis. Using the AASHTO method of flexible pavement design, the following design parameters have been assumed: - An assumed California Bearing Ratio (CBR) value of 10 for the recompacted sandy soil that underlies the proposed driveway pavement areas. - A pavement life of 30 years. ³ Lew, M., et al (2010). "Seismic Earth Pressures on Depp Building
Basements," SEAOC 2010 Convention Proceedings, Indian Wells, CA. - A terminal serviceability (Pt) of 2 (i.e. poor condition). - A regional factor (R) of 3.0. - Assumed total vehicle trips of: - No more than 20 cars per day for car parking (which equates to about (5) 18,000 pound daily equivalent single axle loads, ESALs) - No more than 100 cars per day for drive lanes (which equates to about (22) 18,000 pound daily equivalent single axle loads, ESALs) - An assumed average weight of 4,000 pounds per vehicle was used in our calculations. The project Civil Engineer should review our assumptions to confirm they are appropriate for the anticipated traffic loading. See Tables 2 and 3 below for recommended pavement section thicknesses based on the above assumptions. Table 2: Asphaltic Concrete - Recommended Minimum Thicknesses (inches) | Pavement Materials | Car Parking | Drive Lanes | |--|-------------|-------------| | Asphaltic Concrete | 2 | 2 | | Crushed Aggregate Base Course (less than 5% fines) | 6 | 10 | Table 3: Portland Cement Concrete - Recommended Minimum Thicknesses (inches) | Pavement Materials | Car Parking | Drive Lanes | |--|-------------|-------------| | Portland Cement Concrete | 6 | 6 | | Crushed Aggregate Base Course (less than 5% fines) | 4 | 4 | Asphaltic concrete materials should be compacted to at least 91 percent of the material's theoretical maximum density as determined in general accordance with ASTM D 2041 (Rice Specific Gravity). The crushed aggregate base course should consist of well-graded crushed stone with a maximum particle size no greater than 2 inches. Aggregate base course materials should be free of organics or other deleterious materials, be relatively clean (i.e. less than 5 percent soil passing the U.S. #200 sieve), well graded, and have a liquid limit less than 45 and plasticity index less than 25. The base course should be moisture conditioned to within 2 percent of optimum and compacted to a minimum of 95 percent of a modified Proctor as outlined in Section 3.3 of this report. When placed, the lift base course thickness should generally not exceed 12 inches prior to compacting. The type of compaction equipment used will ultimately determine the maximum lift thickness. In addition, we recommend that the structural fill be placed within +/- 2 percent of the optimum moisture for that material. #### 4.0 CONSTRUCTION CONSIDERATIONS EEI should be retained to provide observation and testing of construction activities involved in the foundation, earthwork, and related activities of this project. EEI cannot accept any responsibility for any conditions that deviate from those described in this report, nor for the performance of the foundations if not engaged to also provide construction observation for this project. #### 4.1 Moisture Sensitive Soils/Weather Related Concerns The upper soils encountered at this site are expected to be sensitive to disturbances caused by construction traffic and to changes in moisture content. During wet weather periods, increases in the moisture content of the soil can cause significant reduction in the soil strength and support capabilities. In addition, soils that become wet may be slow to dry and thus significantly retard the progress of grading and compaction activities. While not required, it will be advantageous to perform earthwork and foundation construction activities during dry weather. # 4.2 Drainage and Groundwater Considerations Water should not be allowed to collect in the foundation excavations or on prepared subgrades for the floor slab during construction. Positive site drainage should be maintained throughout construction activities. Undercut or excavated areas should be sloped toward one corner to facilitate removal of any collected rainwater, groundwater, or surface runoff. The site grading plan should be developed to provide rapid drainage of surface water away from the building areas and to inhibit infiltration of surface water around the perimeter of the building and beneath the floor slab. The grades should be sloped away from the building area. Stormwater should be piped (tightlined) to either an existing city storm sewer or to the drainage ditch along the eastern property line if allowed. #### 4.3 Excavations In Federal Register, Volume 54, No. 209 (October 1989), the United States Department of Labor, Occupational Safety and Health Administration (OSHA) amended its "Construction Standards for Excavations, 29 CFR, part 1926, Subpart P". This document and subsequent updates were issued to better insure the safety of workmen entering trenches or excavations. It is mandated by this federal regulation that excavations, whether they be utility trenches, basement excavations or footing excavations, be constructed in accordance with the new OSHA guidelines. It is our understanding that these regulations are being strictly enforced and if they are not closely followed, the owner and the contractor could be liable for substantial penalties. The contractor is solely responsible for designing and constructing stable, temporary excavations and should shore, slope, or bench the sides of the excavations as required to maintain stability of both the excavation sides and bottom. The contractor's "responsible person", as defined in 29 CFR Part 1926, should evaluate the soil exposed in the excavations as part of the contractor's safety procedures. In no case should slope height, slope inclination, or excavation depth, including utility trench excavation depth, exceed those specified in local, state, and federal safety regulations. We are providing this information solely as a service to our client. EEI does not assume responsibility for construction site safety or the contractor's compliance with local, state, and federal safety or other regulations. #### **5.0 REPORT LIMITATIONS** As is standard practice in the geotechnical industry, the conclusions contained in our report are considered preliminary because they are based on assumptions made about the soil, rock, and groundwater conditions exposed at the site during our subsurface investigation. A more complete extent of the actual subsurface conditions can only be identified when they are exposed during construction. Therefore, EEI should be retained as your consultant during construction to observe the actual conditions and to provide our final conclusions. If a different geotechnical consultant is retained to perform geotechnical inspection during construction, then they should be relied upon to provide final design conclusions and recommendations, and should assume the role of geotechnical engineer of record, as is the typical procedure required by the governing jurisdiction. The geotechnical recommendations presented in this report are based on the available project information, and the subsurface materials described in this report. If any of the noted information is incorrect, please inform EEI in writing so that we may amend the recommendations presented in this report, if appropriate, and if desired by the client. EEI will not be responsible for the implementation of its recommendations when it is not notified of changes in the project. Once construction plans are finalized and a grading plan has been prepared, EEI should be retained to review those plans, and modify our existing recommendations related to the proposed construction, if determined to be necessary. The Geotechnical Engineer warrants that the findings, recommendations, specifications, or professional advice contained herein have been made in accordance with generally accepted professional geotechnical engineering practices in the local area. No other warranties are implied or expressed. This report has been prepared for the exclusive use of Red Crow, LLC for the specific application to the proposed Ecola Square Development located on Clatsop County Tax Lot No. 51030AA04402 in Cannon Beach, Clatsop County, Oregon. EEI does not authorize the use of the advice herein nor the reliance upon the report by third parties without prior written authorization by EEI. #### **APPENDICES** #### **APPENDIX A - SITE LOCATION PLAN** Base Map Source: https://livingatlas.arcgis.com/topoexplorer/ Proposed Ecola Square Development Southwest Corner of First Street and Spruce Street Tax Lot #51030AA04402 Cannon Beach, Clatsop County, Oregon Report No. 22-039-1-R1 March 31, 2022 (revised April 18, 2022) #### **APPENDIX B - EXPLORATION LOCATION PLAN** = Approximate Boring Location Base image source: "Google Earth. **Proposed Ecola Square Development** Southwest Corner of First Street and Spruce Street Tax Lot #51030AA04402 Cannon Beach, Clatsop County, Oregon Report No. 22-039-1-R1 March 31, 2022 (revised April 18, 2022) #### **Appendix C: Boring B-1** Client: Red Crow, LLC Project: Proposed Ecola Square Development Site Address: Southwest Corner of First Street and Spruce Street, Cannon Beach, Clatsop County, OR Location of Exploration: See Appendix B Logged By: Jacqui Boyer Report Number: 22-039-1 Drilling Contractor: PLi Systems Drilling Method: Mud Rotary w/ SPT Hammer Drilling Equipment: B-58 Truck Rig Approximate Ground Surface Elevation (ft msl): 13 Sheet 1 of 2 Date of Exploration: 2/28/2022 | _ | | | Lithology | T | | | | Samplii | ng Data | a | | | |-------------------|-------------|----------------------|---|------------------|-----------------------|----------|-------------------------|-------------------------|-----------------|------------------|---------------------|---------| | 5 | le e | | Littlology | | | | | | ig Date | | | | | Depth (ft) | Water Level | Lithologic
Symbol | Geologic Description of
Soil and Rock Strata | Sample
Number | Blows per
6 Inches | N-value |
Moisture
Content (%) | % Passing
#200 Sieve | Liquid
Limit | Plastic
Limit | Pocket
Pen (tsf) | Remarks | | 2 — | | | Fill - brown gravel fill with little silt, rootlets, dry to
moist, medium dense | SPT-1 | 5
5
4 | •12 | 9 | 10 | | | | | | 4 — | | 0000000 | Sand (SP) - brown to gray sand with trace silt,
heavy organics (wood debris), loose to medium
dense | SPT-2 | 4
5
5 | 14 | 22 | | | | | | | 6 — | | | | SPT-3 | 1
1
2 | 4 | 29 | 1 | | | | | | 8 — | | | | SPT-4 | 1
4
1 | 7 | 208 | | | | | | | 10
12 | | | Silt (MH) - gray to brown high plasticity silt with little
sand, roots, rootlets and woodchips, moist to wet,
very loose to loose | SPT-5 | 0
0
0 | 0 | 73 | 94 | 66 | 39 | | | | 14 | | | | SPT-6 | 0
0
0 | 0 | 111 | | | | | | | 16 | | | | SPT-7 | 0
0
0 | • 0 | 176 | 99 | 170 | 108 | | | | 18 — | | | | | | | | | | | | ₹ | | 20 — | | | vein of gray to blue-gray silty sand with heavy organics encountered | SPT-8 | 0
0
0 | • 0 | 96 | 43 | | | | | | 22 —
-
24 — | | | | | | | | | | | | | | 26 — | | | | SPT-9 | 0
2
1 | 4 | 252 | | | | | | | 28 | | | | | | | | | | | | | | 30 | _ | | | | | <u> </u> | | | | | | l | # Earth Engineers, Inc. #### **Appendix C: Boring B-1** Sheet 2 of 2 Client: Red Crow, LLC Project: Proposed Ecola Square Development Site Address: Southwest Corner of First Street and Spruce Street, Cannon Beach, Clatsop County, OR Location of Exploration: See Appendix B Logged By: Jacqui Boyer Report Number: 22-039-1 Drilling Contractor: PLi Systems Drilling Method: Mud Rotary w/ SPT Hammer Drilling Equipment: B-58 Truck Rig Approximate Ground Surface Elevation (ft msl): 13 Date of Exploration: 2/28/2022 ## Earth Engineers, #### **Appendix C: Boring B-2** Sheet 1 of 2 Client: Red Crow, LLC Project: Proposed Ecola Square Development Site Address: Southwest Corner of First Street and Spruce Street, Cannon Beach, Clatsop County, OR Location of Exploration: See Appendix B Logged By: Jacqui Boyer Drilling Contractor: PLi Systems Report Number: 22-039-1 Drilling Method: Mud Rotary w/ SPT Hammer Drilling Equipment: B-58 Truck Rig Approximate Ground Surface Elevation (ft msl): 12 Date of Exploration: 2/28/2022 | | Т | | Lithology | | | | : | Samplir | ng Data | 3 | | | |--------------|-------------|-------------------------------------|---|------------------|------------------------------|-------------------------------|-------------------------|-------------------------|-----------------|------------------|---------------------|--------------------------------------| | Depth (ft) | Motor Loyol | Vater Level
Lithologic
Symbol | Geologic Description of
Soil and Rock Strata | Sample
Number | Blows per
6 Inches | N-value | Moisture
Content (%) | % Passing
#200 Sieve | Liquid
Limit | Plastic
Limit | Pocket
Pen (tsf) | Remarks | | 2 — | | | Fill - brown gravel fill with little silt, rootlets, dry to moist, medium dense Sand (SM) - brown to gray silty sand wih heavy organics (wood debris), very loose to medium dense | SPT-2 SPT-1 | 18
7
4
11
9
8 | •15
•23 | 31 | | | | | no sample retained in split spoon | | 8 — | | | | SPT-4 SPT-3 | 5
2
3
0
1
0 | • 7
• 1 | 351 | | | | | no sample retained in
split spoon | | 12 | | | Silt (MH) - gray to brown high plasticity silt with little
sand, roots, rootlets and woodchips, moist to wet,
very loose to medium dense | SPT-5 | 0 0 0 | • 0 | 104 | | | | | | | 14 — | | | vein of wood debris encountered (no soil in split spoon) | SPT-7 SPT-6 | 0
0
37
10 | 0 0 1 1 1 1 1 1 | 206
189 | | | | | | | 18 — | | | | | 4 | | | | | | | | | 20 —
22 — | | | vein of gray to blue-gray coarse-grained sand with heavy organics encountered | SPT-8 | 0
1
1 | • 3 | 103 | | | | | | | 24 —
26 — | | | | SPT-9 | 0
0
0 | • 0 | 111 | | | | | | | 28 <i>-</i> | | | | | | | | | | | | | # Earth Engineers, Inc. #### **Appendix C: Boring B-2** Sheet 2 of 2 Client: Red Crow, LLC Project: Proposed Ecola Square Development Site Address: Southwest Corner of First Street and Spruce Street, Cannon Beach, Clatsop County, OR Location of Exploration: See Appendix B Logged By: Jacqui Boyer Report Number: 22-039-1 Drilling Contractor: PLi Systems Drilling Method: Mud Rotary w/ SPT Hammer Drilling Equipment: B-58 Truck Rig Approximate Ground Surface Elevation (ft msl): 12 Date of Exploration: 2/28/2022 Lithology Sampling Data Content (%) % Passing #200 Sieve Water Level Blows per 6 Inches Lithologic Symbol Depth (ft) Geologic Description of Pocket Pen (tsf) Remarks Plastic Limit Liquid N-value Soil and Rock Strata 0 0 34 32 34 36 38 40 Silt (MH) - gray to blue-gray to brown high plasticity SPT-11 silt with sand and gravel, moist to wet, hard 17 45 16 no more organics encountered 42 46 48 50 20 33 16 52 56 58 #### APPENDIX D: SOIL CLASSIFICATION LEGEND | APP | ARENT CONSI | STENCY OF COHESIVE | E SOILS (PEC | CK, HANSON & THORNBURN 1974, AASHTO 1988) | | | | | |--------------|--------------------------------------|----------------------------------|------------------|---|--|--|--|--| | Descriptor | SPT N ₆₀
(blows/foot)* | Pocket Penetrometer,
Qp (tsf) | Torvane
(tsf) | Field Approximation | | | | | | Very Soft | < 2 | < 0.25 | < 0.12 | Easily penetrated several inches by fist | | | | | | Soft | 2 – 4 | 0.25 - 0.50 | 0.12 - 0.25 | Easily penetrated several inches by thumb | | | | | | Medium Stiff | 5 – 8 | 0.50 - 1.0 | 0.25 - 0.50 | Penetrated several inches by thumb w/moderate effort | | | | | | Stiff | 9 – 15 | 1.0 – 2.0 | 0.50 - 1.0 | Readily indented by thumbnail | | | | | | Very Stiff | 16 – 30 | 2.0 – 4.0 | 1.0 – 2.0 | Indented by thumb but penetrated only with great effort | | | | | | Hard | > 30 | > 4.0 | > 2.0 | Indented by thumbnail with difficulty | | | | | ^{*} Using SPT N₆₀ is considered a crude approximation for cohesive soils. | APPARENT DENSITY OF COHESIONLESS
SOILS (AASHTO 1988) | | | | | | | | | |---|--|--|--|--|--|--|--|--| | Descriptor | SPT N ₆₀ Value (blows/foot) | | | | | | | | | Very Loose | 0 – 4 | | | | | | | | | Loose | 5 – 10 | | | | | | | | | Medium Dense | 11 – 30 | | | | | | | | | Dense | 31 – 50 | | | | | | | | | Very Dense | > 50 | | | | | | | | | MOISTURE (ASTM D2488-06) | | | | | | | | | | |--------------------------|---|--|--|--|--|--|--|--|--| | Descriptor | Criteria | | | | | | | | | | Dry | Absence of moisture, dusty, dry to the touch, well below optimum moisture content (per ASTM D698 or D1557) | | | | | | | | | | Moist | Damp but no visible water | | | | | | | | | | Wet | Visible free water, usually soil is below water table, well above optimum moisture content (per ASTM D698 or D1557) | | | | | | | | | | Descriptor | Criteria | |------------|---| | Trace | Particles are present but estimated < 5% | | Few | 5 – 10% | | Little | 15 – 25% | | Some | 30 – 45% | | Mostly | 50 – 100% | | | are estimated to nearest 5% in the field.
unless percentages are based on
sting | | SOIL PARTICLE SIZE (ASTM D2488-06) | | | | | | | | | | |------------------------------------|--|--|--|--|--|--|--|--|--| | Descriptor | Size | | | | | | | | | | Boulder | > 12 inches | | | | | | | | | | Cobble | 3 to 12 inches | | | | | | | | | | Gravel - Coarse
Fine | 3/4 inch to 3 inches
No. 4 sieve to 3/4 inch | | | | | | | | | | Sand - Coarse
Medium
Fine | No. 10 to No. 4 sieve (4.75mm)
No. 40 to No. 10 sieve (2mm)
No. 200 to No. 40 sieve (.425mm) | | | | | | | | | | Silt and Clay ("fines") | Passing No. 200 sieve (0.075mm) | | | | | | | | | | | U | NIFIED SO | IL CLASSI | FICATION SYSTEM (ASTM D2488) | |--------------|--------------------------------------|------------|-----------------|--| | | Major Division | | Group
Symbol | Description | | Coarse | Cround (FOO) or | Clean | GW | Well-graded gravels and gravel-sand mixtures, little or no fines | | Grained | Gravel (50% or more retained | Gravel | GP | Poorly graded gravels and gravel-sand mixtures, little or no fines | | Soils | on No. 4 sieve) | Gravel | GM | Silty gravels and gravel-sand-silt mixtures | | | on No. 4 sieve) | with fines | GC | Clayey gravels and gravel-sand-clay mixtures | | (more than | Cd /> 500/ | Clean | SW | Well-graded sands and gravelly sands, little or no fines | | 50% retained | Sand (> 50% | sand | SP | Poorly-graded sands and gravelly sands, little or no fines | | on #200 | passing No. 4
sieve) | Sand | SM | Silty sands and sand-silt mixtures | | sieve) | Sieve) | with fines | SC | Clayey sands and sand-clay mixtures | | Fine Grained | Cilt and Clay | | ML | Inorganic silts, rock flour and clayey silts | | Soils | Silt and Clay
(liquid limit < 50) | | CL | Inorganic clays of low-medium plasticity, gravelly, sandy & lean clays | | | (liquid lillili < 50) | | OL | Organic silts and organic silty clays of low plasticity | | (50% or more | Cilt and Clay | | МН | Inorganic silts and clayey silts | | passing #200 | Silt and Clay
(liquid limit > 50) | | CH | Inorganic clays or high plasticity, fat clays | | sieve) | (iiquiu iiiiit > 50) | | ОН | Organic clays of medium to high plasticity | | Hig | hly Organic Soils | | PT | Peat, muck and other highly organic soils | | GRAPHIC SYMBOL LEGEND |
--| | | | Standard Penetration Test (2" OD), ASTM D1586 | | Shelby Tube, ASTM D1587 (pushed) | | Dames and Moore ring sampler (3.25" OD and 140-pound hammer) | | Rock coring | | | #### APPENDIX E - LIQUID AND PLASTIC LIMITS TEST REPORT | | SOIL DATA | | | | | | | | | | | | | | |----------|-----------|---------------|-------|------------------------------------|-------------------------|------------------------|----------------------------|------|--|--|--|--|--|--| | SYMBOL | SOURCE | SAMPLE
NO. | DEPTH | NATURAL
WATER
CONTENT
(%) | PLASTIC
LIMIT
(%) | LIQUID
LIMIT
(%) | PLASTICITY
INDEX
(%) | uscs | | | | | | | | • | Boring 1 | 1 | 10 | 72.6 | 39 | 66 | 27 | МН | | | | | | | | - | Boring 1 | 2 | 15 | 176.0 | 108 | 170 | 62 | МН | | | | | | | | A | Boring 1 | 3 | 35 | 149.1 | 34 | 57 | 23 | МН | | | | | | | Client: Red Crow, LLC **Project:** Propsed Ecola Square Development Project No.: 22-039 **Figure** # APPENDIX F NEARBY HISTORIC WELL LOGS ## STATE OF OREGON GEOTECHNICAL HOLE REPORT (as required by OAR 690-240-035) | (as required by O. M. S. | | | | | |---|--|--|--|--| | OWNER/PROJECT: Hole Number $HA - 7$ | (9) LOCATION OF HOLE by legal descr
County <u>Clatsop</u> Latitude | iption:
Long | itude | | | ne plichael inage. | Township 5 N Range 10 | W | | WM. | | 1107 0 4 . | Section 3 0 NE 1/4 N | ıΕ | 1/4 | | | Callyon | Tax Lot Lot Block | Sut | division _ | | | TYPE OF WORK | or a difference Wall for nearest address) 4 B 1 | · Ocean | \ HV: | | | New Deepening Ancietation (repaired | Cannon Beach OR 9711 | 0 | | | | COMBINECTION | Canton Geen, UK | | shod | | | Rotary Air And Auger Hollow Stem Auger | Map with location indentified mu | | | | | Rotary Mud Cable Tool Push Probe Other | (10) STATIC WATER LEVEL: | | | 1/2/2 | | TYPE OF HOLE: | 3 ft. below land surface. | | Date _/ | 2/15/02 | | Uncased Temporary Cased Permanent | Artesian pressure lb. per squa | re inch. | Date | | | Uncased Permanent Slope Stability Other | (10) STATIC WATER LEVEL: | | , 15 | C1 | | USE OF HOLE: Collect soil samples | Ground Elevation Appro | ximately | , /3 | teer MS | | | | | 1 _ | 1 | | | Material Description | Fron | $\frac{n}{2}$ | | | 6) BORE HOLE CONSTRUCTION: | Elastic Silt | | //- | | | pecial Construction approval Yes No Depth of Completed Hole 12 ft. | Material Description Elastic Silt. Fat Clay | 3_ | | <u> </u> | | pecial Construction approva. | | | | | | HOLE SEAL | | | _ | | | Diameter From To Material From To Sacks or pounds | | _ | | | | 3" O / | | _ | | | | | | | | | | | | | | | | | 1.27 | Deta (| | 12/13/0. | | | Date Started /d /13/02 | Date | Outhieren | | | | - CONTRACT OC. | | | | | Backfill placed from ft. to ft. Material | (12) ABANDONMENT LOG: | | | | | Filter Pack placed from ft. to ft. Size of pack | Material Description | From | | Sacks or Pound | | (7) CASING/SCREEN: N/A | Bentonite Chips . | 0 | 12 | 1 Sach | | (.) | Bentounce | | | | | Diameter From To Gauge Steel Plastic Welded Threaded | | 4.2 | 10.000 | | | Casing: | Har Car | 1/19 |) ; | | | | | | | | | | FFR 2 | 7 2003 | | | | | | + 1.000 | | | | Screen: | WATER REST | umiuča U | SPT | | | | Date started /2/13/62 | ate Comple | eted / | 1/13/00 | | Slot size | Date states | | | | | | | | | | | | | | | uctor, or registe | | (8) WELLTEST: | Professional Certification | onitorina W | ell constri | | | Pump Bailer Air Flowing Artesian | (to be signed by a licensed water supply or m | onitoring w | eli constri | | | Pump Bailer Air Flowing Artesian Permeability Yield GPM | (to be signed by a licensed water supply or m
geologist or civil engineer). | teration or | abandonn | nent work | | Pump Bailer /// Air Flowing Artesian Permeability Yield GPM Conductivity PH | (to be signed by a licensed water supply or me geologist or civil engineer). I accept responsibility for the construction, al | teration, or | abandonn | nent work | | Pump Bailer // Air Flowing Artesian Permeability Yield GPM Conductivity PH Temperature of water °F Depth artesian flow found ft. | (to be signed by a licensed water supply or me geologist or civil engineer). I accept responsibility for the construction, all performed on during the construction dates represented the construction of | teration, or
ported abo | abandonn
ve. All w | nent work
ork performed
onstruction | | Pump Bailer // Air Flowing Artesian Permeability Yield GPM Conductivity PH Temperature of water °F Depth artesian flow found ft. Was water analysis done? Yes No | (to be signed by a licensed water supply or m
geologist or civil engineer). | teration, or
ported about
geotechnicy knowled | abandonn
ve. All ve
cal hole c | nent work
ork performed
oristruction | | Pump Bailer // Air Flowing Artesian Permeability Yield GPM Conductivity PH Temperature of water °F Depth artesian flow found ft. Was water analysis done? Yes No | (to be signed by a licensed water supply or me geologist or civil engineer). I accept responsibility for the
construction, all performed on during the construction dates reduring this time is in compliance with Oregon standards. This report is true to the best of me | teration, or
ported abo
n geotechni
y knowled | abandonn
ve. All w | nent work
ork performed
oristruction | | Pump Bailer Yield GPM Conductivity PH Temperature of water °F Depth artesian flow found ft. Was water analysis done? Yes No By whom? Depth of strata analyzed. From ft. to ft. | (to be signed by a licensed water supply or me geologist or civil engineer). I accept responsibility for the construction, all performed on during the construction dates reduring this time is in compliance with Oregon standards. This report is true to the best of me | teration, or
eported abo
n geotechni
y know | abandonn
ve. All ve
cal hole c | nent work
ork performed
orstruction | | Pump Bailer Yield GPM Conductivity PH Temperature of water °F Depth artesian flow found ft. Was water analysis done? Yes No By whom? Depth of strata analyzed. From ft. to ft. Remarks: | (to be signed by a licensed water supply or mageologist or civil engineer). I accept responsibility for the construction, all performed on during the construction dates reduring this time is in compliance with Oregon standards. This report is true to the best of mageonic description. | teration, or
eported abo
n geotechni
y know | abandonn
ve. Allector
cal hole con
called | nent work
ork performed
orstruction | | Pump Bailer Yield GPM Conductivity PH Temperature of water °F Depth artesian flow found ft. Was water analysis done? Yes No By whom? Depth of strata analyzed. From ft. to ft. | (to be signed by a licensed water supply or me geologist or civil engineer). I accept responsibility for the construction, all performed on during the construction dates reduring this time is in compliance with Oregon standards. This report is true to the best of me | teration, or
eported abo
n geotechni
y know | abandonn
ve. Allector
cal hole con
called | nent work
ork performed
on struction | | Pump Bailer Yield GPM Conductivity PH Temperature of water °F Depth artesian flow found ft. Was water analysis done? Yes No By whom? Depth of strata analyzed. From ft. to ft. Remarks: | (to be signed by a licensed water supply or me geologist or civil engineer). I accept responsibility for the construction, all performed on during the construction dates reduring this time is in compliance with Oregon standards. This report is true to the best of me standards. | teration, or
eported abo
n geotechni
y know | abandonn
ve. All ve
can hole con
mon Number | nent work
ork performed
oristruction | | Pump Bailer Yield GPM Conductivity PH Temperature of water °F Depth artesian flow found ft. Was water analysis done? Yes No By whom? Depth of strata analyzed. From ft. to ft. Remarks: | (to be signed by a licensed water supply or mageologist or civil engineer). I accept responsibility for the construction, all performed on during the construction dates reduring this time is in compliance with Oregon standards. This report is true to the best of mageonic description. | teration, or
eported abo
n geotechni
y know | abandonn
ve. All ve
can hole con
mon Number | nent work
ork performed
on struction | | Pump Bailer Yield GPM Conductivity PH Temperature of water °F Depth artesian flow found ft. Was water analysis done? Yes No By whom? Depth of strata analyzed. From ft. to ft. Remarks: | (to be signed by a licensed water supply or me geologist or civil engineer). I accept responsibility for the construction, all performed on during the construction dates reduring this time is in compliance with Oregon standards. This report is true to the best of me signed. Signed Affiliation Geo Engineer | teration, or
ported abon
geotechni
y knowlad | abandonn
ve. Al we
car hole c
car car hole c
car hole c
car hole c
car hole c
car hole c
car hole car hole c
car hole c
car hole c
car hole c
car hole c
car hole car hole c
car | nent work
ork performed
on struction | | Pump Bailer Yield GPM Conductivity PH Temperature of water °F Depth artesian flow found ft. Was water analysis done? Yes No By whom? Depth of strata analyzed. From ft. to ft. Remarks: | (to be signed by a licensed water supply or me geologist or civil engineer). I accept responsibility for the construction, all performed on during the construction dates reduring this time is in compliance with Oregon standards. This report is true to the best of me signed. Signed Affiliation Geo Engineer | teration, or
ported abon
geotechni
y knowlad | abandonn
ve. Al we
car hole c
car car hole c
car hole c
car hole c
car hole c
car hole c
car hole car hole c
car hole c
car hole c
car hole c
car hole c
car hole car hole c
car | nent work
ork performed
on struction | | ļ | (| Ged | En | gin | eer | S | Inc | • | 108 NO | CLIENT | 177 | LOCATION | | |---------|--|----------|---------------|----------------------|--------------------|-----------------|----------|--------------|---------------|--------------------|--|--------------|--------| | 1.00 | ATION O | | | | | | | IOR DE ARROY | 1034-601- | to Michai | 1 Thayer- | Camon Bore | 4, OK | | | | 2 | 1 | | | | | 7/ 🐴 \ | DRILLING METH | 00: Hand | Auger | | | | 1 | 2 | 5 Fire | e 4 | 1 | | | | 1.17 | | | | HA. | 7 | | | _ | | | | | | | 1 | | | | | | | 1-1 | ouse | | | | | | | 1 | SAMPLING METH | 100: Hand | Aug er | | OF / | | | | | | | | | | | | | | DRIL | | | | | | | | | | | l | WATER LEVEL | | | STARY | FINISH | | | | | _ | | |) | | | TIME | | | 13:00 | 14:00 | | | | HA7 | + | | , | / | ——-d | | DATE | | | DATE | DATE | | DATU | м | | | | | ELEVA | TION | | CASING DEPTH | | | 12/13 | 12/13/ | | æ | 25 / | ט ס ו | SAMPLE
NO. | E oc | ъ | | T | | E CONDITIONS: | | L_ | | | | SAMPLER | INCHES
PRIVE
PRCOVERED | DEPTH OF | 3/42 | BLOWS/FT.
SAMPLER | BER | DEPTH
IN SES | SOL | | Sa | nd. | | | | | S. | \ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 80 | SAMPLE | SA | NUMBER OF
RINGS | 0.2 | 1 0 | 5 | | 1.5 | | | | | | 7 | | | | | - | rt- | - | 20 | OIL DESCRIPT | 1041 | | | | | <u>/</u> | | | | | 0 | Н | | | DIE DESCRIPT | ION | COMM | ENTS | | | | | | | | ١, | | Ela | sticsilt | Brown | Moist. | | | | | \leftarrow | <u> </u> | | | | | MI | / | No od | or. | | | | | | | | | | | 2 | X | | | | | 724<100 | M | | | | | | | | DI'S | Н | | | | | | | | | | | | | | 3 | | Ma | dlum acci | fat | la blet | | | | | | | | | | 4 | | M | adre te | rtroley | lay wet | ' | | | | | | \leftarrow | | | | \dashv | | / | | | | | | | | | | | | 5 | Ch | / | | | | | | | | | | | | | | Χİ | | | | | 71.1.11 | | | | $\langle \cdot \rangle$ | | \angle | | | 6 | | | | | | 7LV 140 | por M | | | | | | | | 7 | 4 | | | | | | | | _ | | | | | | | \dashv | | | | | | | | | | | | | | 8 | 1 | | | | | | | | | | | | | | 9 | | | | | | | | | | \leftarrow | | \leftarrow | | | | 4 | | | | | | | | | | - 1 | | | 1 | 0 | - | 0 | | | | | | | | | | | | | | 1 | Dea | omes yello | wish or | age at 10t | <i>-</i> /- | | | _ | $\langle \; \rangle$ | | | | | 1 | 1 | | | | | | | | | | | | | | 2 | A | | | | | אספה און | An A | | | | | \leftarrow | \dashv | | - | - | 7 | ob Dep | 11 12 | feet | | yan 2. | | | | | | - 1 | ļ | 3 | - | - | | | | | | | | | 1 | | | $\neg \neg$ | _ | 1 | | | | | | | | k | | | / | | | 4 | | | | | | | | | | | | | | | 5 | 4 | | | | | | | | | + | | - | | | - | 1 | | | THE PERSON AND THE | era i | | | | | / | | / | | 1 | 6 | 1 | | | The second | The same of sa | | | | | 1 | f | 1 | | | | 1 | | | 1 1-1 | 2 | | | | 1 | | k | | | | 7 |] | | | FEB. | § 7 2003 | | | | | 1 | | / 1 | | - 1 | | 1 | 1 | | | | | | | + | 1 | | | | J | 8 | - | | | WATER HEL |
JUNES DEPT | | | | | 4 | | 4 | _ | | 8 | - | | | WATER HEL
BACEN | OREGON | | | ## STATE OF OREGON GEOTECHNICAL HOLE REPORT (as required by OAR 690-240-035) | NOF HOLE by legal description Range NE 1/4 Lot Block Well (or nearest address) 4 Beach OR 9.7 with location indentified WATER LEVEL: ft. below land surface. sure lb. per serial Description Siff W Sand DONMENT LOG: aterial Description ide Chip 5 | B7 Oce Square inch. Fr. G. G. G. G. G. G. G. G. G. | Date Date Date Date Date Date Date Date | te 10/1 te 10/1 te 7/2 1/5 feel | /3/62
/ ms | |--|--|--|--|--| | Range NE 1/4 Lot Block Well (or nearest address) 4 Reach OR 9.7 with location indentified WATER LEVEL: ft. below land surface. sure lb. per serial Description Siff W Sand Lay | B7 Oce SB7 Oce SINO I must be all square inch. Fr 9 Date | Date Date Date Date Date Date Date Date | te 10/1 te 10/1 te 7/2 1/5 feel | /3/62
/ MS
SWL | | NE 1/4 _Lot Block Well (or nearest address) 4 Beach OR 97 with location indentified WATER LEVEL: lbelow land surface. sure lb. per serial Description Siff \(\omega \) Sano 1/4/3/02 DONMENT LOG: aterial Description | B7 Oce stands and square inch. | Date Date Date Date Date Date Date Date | d te 10/1. 15 fee! To 4 91/2 11 | /3/62
/ ms
 SWL
 a//3/0. | | LotBlockBlockBlockBlockBlockBlockBlockBlockBlockBlock | B 7 Oce III O III must be all square inch. | Date Date Date Date Date Date Date Date | d te 10/1. 15 fee! To 4 91/2 11 | /3/62
/ ms
SWL | | Well (or nearest address) 4 Beach OR 97 with location indentified WATER LEVEL: ft. below land surface. sure lb. per state FACE LOG: Ground Elevation App Berial Description Ground Sano | B f Oce I must be all square inch. Fr C 9 Date | Date Date Date Date Date Date Date Date | d te 10/1. 15 fee! To 4 91/2 11 | /3/62
/ ms
SWL | | Reach OR 97 with location indentified WATER LEVEL: 1. below land surface. sure | square inch. Fr. C. 9 | Date Date Date Date Date Date Date Date | te 12/11. 15 feel To 4 91/2 11 | /3/62
/ MS
SWL | | with location indentified WATER LEVEL: ft. below land surface. sure lb. per state FACE LOG: Ground Elevation ft. f. w/ Sano ft. y ft. Sano DONMENT LOG: aterial Description | square inch. | Date Date Date Date Date Date Date Date | te 10 /1. 15 feet To 4 91/2 11 | / ms | | WATER LEVEL: 1. ft. below land surface. Surelb. per series FACE LOG: Ground Elevation Ground Scription Elevation Ground Scription Ground Elevation Grou | Square inch. Fr. C. Sy | Date Date Date Date Date Date Date Date | To 4 91/2 | F M S SWL 2/3/0. | | WATER LEVEL: 1. ft. below land surface. Surelb. per series FACE LOG: Ground Elevation Ground Scription Elevation Ground Scription Ground Elevation Grou | Square inch. Fr. C. Sy | Date Date Date Date Date Date Date Date | To 4 91/2 | F M S SWL 2/3/0. | | R. below land surface. sure | Proximale Fr. C. S. 9 | om D | To 4 9 1/2 11 | F M S SWL 2/3/0. | | sure | Proximale Fr. C. S. 9 | om D | To 4 9 1/2 11 | F m S SWL | | Ground Elevation Apperial Description Siff w/ Sand 1/4/13/02 DONMENT LOG: aterial Description | Proximale Fr. C. S. 9 | om D | To 4 9 1/2 11 | F m S SWL | | Ground Elevation Apperial Description Siff w/ Sand 1/4/13/02 DONMENT LOG: aterial Description | Fr
C
Sy
9 | om // // // e Compl | To 4/ 9 1/2 // // // // // // // // // // // // / | SWL | | erial Description Siff w/ Sand 1 < y Siff Sand 1 / 4 / 13/0 = DONMENT LOG: aterial Description | Fr
C
Sy
9 | om // // // e Compl | To 4/ 9 1/2 // // // // // // // // // // // // / | SWL | | DONMENT LOG: | Date | e Compl | 4/
91/ ₂
// | 2//3/0. | | DONMENT LOG: | Date | e Compl | 9 // ₂ // | | | DONMENT LOG: | Date | e Compl | // | | | DONMENT LOG: | Date | e Compl | eleted /& | | | DONMENT LOG: | | | aterial Description | From | То | Sacks | or Pound | | ite Chip 5 | From | 10 | Sacks | of Found | | ite Chips | (1) | 11 | 1 | Sach | | Constant of the second | 10 | - Contin | + | | | - FREG | 7 - 1 | 1 | | | | | | [] | - | | | TER 2 | 2 2003 | + + | - | | | - 1 : 5 5 | <u> </u> | +-+ | | | | WATER | , logical fi | PT | | | | VV * 1820 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | Chagon | 1 | | | | 12/2/ | | | 12/1 | 3/00 | | 12/13/02 | Date Com | pieieu | -/-/- | - | | by a licensed water supply of vil engineer). Instibility for the construction during the construction date is in compliance with Ordis report is true to the best of License. | n, alteration fees reported a egon good of my known e | ve. Anical ho | PROFESION OF THE PROFES | er Cord | | d to ci | nal Certification d by a licensed water supply of civil engineer). ponsibility for the construction data time is in compliance with Or. This report is true to the best of the construction of the construction data time is in compliance with Or. Licen | nal Certification d by a licensed water supply or monitoring civil engineer). ponsibility for the construction, alteration on during the construction dates reported time is in compliance with Oregon good This report is true to the best of my known | nal Certification d by a licensed water supply or monitoring well co- civil
engineer). ponsibility for the construction, alteration for thime is in compliance with Oregon good chical by This report is true to the best of my knowledge and License or Registration | nal Certification d by a licensed water supply or monitoring well constructor, civil engineer). ponsibility for the construction, alteration recommendation in compliance with Oregon good in call hole construction is in compliance with Oregon good in call hole construction. License or Registration humans | # APPENDIX G LIQUEFY PRO OUTPUT ### LIQUEFACTION ANALYSIS #### **Proposed Ecola Development** Hole No.=B1 Water Depth=3 ft Surface Elev.=13 Magnitude=8.9 Acceleration=0.730g #### APPENDIX H: SURCHARGE-INDUCED LATERAL EARTH PRESSURES FOR WALL DESIGN #### LINE LOAD (applicable for retaining walls not exceeding 20 feet in height): Figure 16-28 Pressure distribution against vertical wall resulting from line load of intensity q. #### CONCENTRATED POINT LOAD (applicable for retaining walls not exceeding 20 feet in height): Figure 16-27 Pressure distribution against vertical wall resulting from point load, Q. #### **AREAL LOAD:** Figure 16-26 Influence of <u>areal loading</u> on wall pressures. use K=0.4 for active condition (i.e. top of wall allowed to deflect laterally) use K=0.9 for at-rest condition (i.e. top of wall not allowed to deflect laterally) Resultant, R = K * q * H Where H = wall height (feet) Lateral pressure due to backfill Lateral pressure due to areal loading Source of Figures: McCarthy, D.F., 1998, "Essentials of Soil Mechanics and foundations, Basic Geotechnics, Fifth Edition." Earth Engineers, Inc. Proposed Ecola Square Development Southwest Corner of First Street and Spruce Street Tax Lot #51030AA04402 Cannon Beach, Clatsop County, Oregon Report No. 22-039-1-R1 March 31, 2022 (revised April 18, 2022) #### **MEMORANDUM** **DATE:** September 21, 2022 TO: Jamie Lerma (Red Crow, LLC) FROM: Todd Prager, RCA #597, ISA Board Certified Master Arborist **RE:** Tree Plan for First and Spruce Project #### **Summary** This report includes tree removal and protection recommendations based on the preliminary site plan for the First and Spruce project in Cannon Beach, Oregon. Based on the preliminary site plan, 14 trees over 6-inch diameter (DBH) are proposed for removal and 23 trees will be retained. Of the 23 trees recommended for retention, 12 are within the site boundaries and 11 are within the adjacent right-of-way. The trees to be retained will be protected by adhering to the recommendations in this report. #### **Background** The property at First and Spruce Street in Cannon Beach is currently zoned commercial. There is a pending conditional use application before the Planning Commission for four to five single family homes and four to seven attached units. The property is currently vacant, 0.42 acres in size, and contains a narrow strip of wetland along the eastern property line. The wetland and adjacent area are populated with primarily willow species (*Salix sp.*) and red alder (*Alnus rubra*) trees. Attachment 1 is the existing conditions map with existing tree locations. Attachment 2 is the preliminary site plan with existing tree locations. At their August 25, 2022 hearing, the Planning Commission requested an arborist report for the project. The assignment requested of our firm for this project was to: - Assess and tag all trees over 6-inch DBH within and directly adjacent to the development site; and - Provide a report with recommendations for the trees to be removed based on the proposed site plan along with protection recommendations for the trees to be retained. #### Tree Assessment On September 9, 2022 I completed the inventory of existing trees over 6-inch DBH at the project site. The complete inventory data for each tree is provided in Attachment 3 and includes the tree number, common name, scientific name, DBH, approximate crown radius, health condition, structural condition, pertinent comments, and treatment recommendations (remove or retain). The tree numbers in the inventory in Attachment 3 correspond to the tree numbers on the existing conditions map in Attachment 1 and proposed site plan in Attachment 2. The trees were also tagged with their corresponding numbers in the field. #### Tree Removal and Retention Trees 20 and 27 are slightly closer to A typical minimum recommended root protection zone is to limit construction disturbances to no closer than a radius from a tree of 0.5 feet per inch of DBH if no more than 25 percent of the root protection zone area (estimated at one foot radius per inch of DBH) is impacted. Figure 1 illustrates this concept. This tree protection zone is widely accepted in western Oregon to provide adequate tree protection. This standard may need to be adjusted on a case-by-case basis due to tree health, species, root distribution, whether the tree will be impacted on multiple sides, and other factors. Figure 1: Typical minimum protection zone construction impacts than the typical minimum construction setback illustrated in Figure 1. These trees will be protected with project arborist oversight during construction as further described in the tree protection recommendations section of this report. They will be evaluated in the field during construction with a final recommendation for preservation or removal by the project arborist. If a tree is recommended for removal, coordination and approval from the City of Cannon Beach would be required. Based on the preliminary site plan and typical minimum root protection illustrated in Attachment 1, 14 trees over 6-inch DBH are proposed for removal and 23 trees will be retained. Of the trees recommended for retention, 12 are within the site boundaries and 11 are within the adjacent right-of-way. Tree protection recommendations for the trees to be retained are provided in the next section of this report. #### **Tree Protection Recommendations** As described in the previous section of this report, a typical minimum recommended root protection zone is to limit construction disturbances to no closer than a radius from a tree of 0.5 feet per inch of DBH if no more than 25 percent of the root protection zone area (estimated at one foot radius per inch of DBH) is impacted. Figure 1 illustrates this concept. This standard may need to be adjusted on a case-by-case basis due to tree health, species, root distribution, whether the tree will be impacted on multiple sides, and other factors. The root protection zone radii of one foot per inch of DBH and typical minimum construction setback radii of 0.5 feet per inch of DBH are shown on the existing conditions map and proposed site plan in Attachments 1 and 2 for the trees to be retained adjacent to proposed construction. The trees to be retained can be protected by placing tree protection fencing at or beyond their typical minimum protection zones wherever possible as shown in Attachments 1 and 2. No grading, excavation, stockpiling, storage, disposal, or any other construction related activity shall occur in the tree protection zones unless specifically reviewed and approved by the project arborist. The following additional tree protection measures shall apply to the trees to be retained: - *Tree Protection Fencing*: Tree protection fencing shall be installed in the locations shown in Attachments 1 and 2 prior to construction. If work is required in the tree protection zones, the project arborist shall be consulted to oversee the work. - Directional Felling: Fell the trees to be removed away from the trees to be retained so they do not contact or otherwise damage the trunks or branches of the trees to be retained. No vehicles or heavy equipment shall be permitted within the tree protection zones during tree removal operations. - Periodic Risk Assessments: A new forest edge will be created at the site with the removal of existing trees for development. This will increase the windthrow risk of exposed trees along the new edges. I recommend that the project arborist conduct a tree risk assessment immediately following site clearing to identify trees that pose significant risks. For trees that pose significant risks, mitigation strategies for retaining them such as pruning or snag creation should be explored as recommended by the project arborist. Any recommended tree removal or snag creation will require the review and approval of the City of Cannon Beach. Risk assessments should be conducted periodically throughout construction to document whether trees are adapting to the new edge conditions and risks are mitigated appropriately with City approval. - *Stump Removal*: Flush cut and retain stumps or carefully grind stumps of trees to be removed from within the tree protection zones. Do not pull stumps with a machine. Todd Prager & Associates, LLC 601 Atwater Road · Lake Oswego, OR 97034 - *Utilities*: The utility alignments are not yet known as of the writing of this report. Utilities shall be routed outside the tree protection zones unless otherwise approved by the project arborist using techniques such as directional boring at appropriate depths or pneumatic excavation. - Grading: The final grading plan is not yet known as of the writing of this report. No grading is permitted within the tree protection zones unless otherwise approved by the project arborist and the amount of grading is four inches or less. If additional grading is required within the tree protection zones, it shall be reviewed and approved with conditions by the project arborist to limit tree impacts. If significant impacts from grading will occur, additional tree removal may be required if permitted by the City of Cannon Beach. - Building Foundations Adjacent to Tree Protection Zones: The project arborist shall be onsite to oversee excavation adjacent to trees 13, 19, 20, 24, 25, and 27. Any roots over 2-inches in diameter will need to be preserved or pruned with sharp pruning tools as directed by the project arborist. Trees
20 and 27 are slightly closer to construction impacts than the typical minimum construction setback illustrated in Figure 1. These trees will be evaluated in the field during construction with a final recommendation for preservation or removal by the project arborist. If a tree is recommended for removal, coordination and approval from the City of Cannon Beach would be required. - Compaction Management: If needed for construction access, a 12-inch layer of wood chips over geotextile fabric shall be placed in the tree protection zones as shown in Attachments 1 and 2 to prevent excessive soil compaction from construction traffic. The project arborist will need to review and approve shifting of the fence locations and final placement of wood chips if required. The fabric and wood chips must be maintained daily to ensure the layer of protection is effective. The fabric and wood chips should be removed after construction is complete. - Crown Pruning Trees: If the crowns of any trees need to be raised and/or reduced, it shall occur prior to construction. The pruning shall be conducted by an ISA certified arborist in accordance with ANSI A300 pruning standards in coordination with the project arborist. The pruning shall be the minimum necessary to achieve the required clearance for construction. - *Erosion Control*: If erosion control is required within or directly adjacent to the tree protection fencing, straw wattles shall be used to avoid excavation. Additional tree protection recommendations for the trees to be retained are provided in Attachment 4. #### Conclusion Based on the preliminary site plan, 14 trees over 6-inch diameter (DBH) are proposed for removal and 23 trees will be retained. Of the trees recommended for retention, 12 are within the site boundaries and 11 are within the adjacent right-of-way. The trees to be retained will be protected by adhering to the recommendations in this report. Any change to the tree protection plan should be approved by the project arborist to ensure that the trees to be retained are adequately protected. Please contact me if you have questions, concerns, or need any additional information. Sincerely, **Todd Prager** ASCA Registered Consulting Arborist #597 ISA Board Certified Master Arborist, WE-6723B ISA Qualified Tree Risk Assessor AICP, American Planning Association Todd Prager Attachments: Attachment 1 - Existing Conditions Map with Trees Attachment 2 - Site Plan with Trees Attachment 3 - Tree Inventory Attachment 4 - Tree Protection Recommendations Attachment 5 - Assumptions and Limiting Conditions Tree Plan for First and Spruce Tree Plan for First and Spruce September 21, 2022 # Attachment 3 # Attachment 3 - Tree Inventory | ree No. | Common Name | Scientific Name | DBH ¹ | Single
DBH ² | C-Rad ³ | Condition ⁴ | Structure | Comments | Treatment | |---------|-----------------|-------------------|------------------|----------------------------|--------------------|------------------------|-----------|--|-----------| | 1 | red alder | Alnus rubra | 15 | 15 | 20 | poog | fair | one sided | retain | | 2 | red alder | Alnus rubra | 10 | 10 | 10 | fair | poor | poor trunk taper, 10% live crown ratio, one sided | retain | | 3 | red alder | Alnus rubra | 11,7 | 13 | 15 | fair | fair | codominant at ground level, leans south | retain | | 4 | red alder | Alnus rubra | 12 | 12 | 20 | poog | fair | one sided | retain | | 5 | red alder | Alnus rubra | 11 | 11 | 10 | poog | fair | one sided, leans south | retain | | 9 | red alder | Alnus rubra | 12 | 12 | 20 | pood | fair | one sided | retain | | 7 | red alder | Alnus rubra | 6 | 6 | 12 | poog | fair | east-west crown extension suppressed by adjacent trees | retain | | 8 | red alder | Alnus rubra | 15 | 15 | 20 | poog | poog | | retain | | 6 | Hookers willow | Salix hookeriana | 2,6 | 6 | 19 | poog | fair | codominant at ground level, extreme lean northwest | remove | | 10 | red alder | Alnus rubra | 10 | 10 | 15 | poog | fair | one sided | retain | | 11 | red alder | Alnus rubra | 19 | 19 | 20 | poog | fair | codominant at 10' | retain | | 12 | red alder | Alnus rubra | 2,6 | 11 | 10 | pood | fair | codominant at 2' | retain | | 13 | red alder | Alnus rubra | 11,9 | 13 | 15 | boog | fair | codominant at 1' with included bark | retain | | 14 | red alder | Alnus rubra | 12,12 | 16 | 25 | poog | fair | codominant at 1' | remove | | 15 | red alder | Alnus rubra | 9 | 9 | 0 | very poor | very poor | dead | remove | | 16 | Scoulers willow | Salix scouleriana | 20,17,12 | 28 | 30 | poor | poor | three stems at 1', 20" stem failed, extensive decay | remove | | 17 | Sitka spruce | Picea sitchensis | 9 | 9 | 10 | poog | poog | | retain | | 18 | red alder | Alnus rubra | 10,5 | 11 | 15 | fair | fair | one sided, leans toward street, codominant at 1' | retain | | 19 | red alder | Alnus rubra | 8 | 8 | 5 | fair | poor | poor trunk taper, 10% live crown ratio | retain | | 20 | red alder | Alnus rubra | 11,11 | 15 | 15 | fair | fair | codominant at ground level, south trunk with decay seam and lean toward street | retain | | 21 | red alder | Alnus rubra | 12,12,12,9 | 22 | 25 | poog | fair | multiple leaders at ground level, ivy along trunk | remove | | 22 | red alder | Alnus rubra | 10,6,3 | 12 | 12 | poog | fair | multiple leaders at ground level, leans toward street | retain | | 23 | Scoulers willow | Salix scouleriana | 9,9,5,4 | 14 | 20 | fair | poor | partially failed into wetland, multiple leaders at lower trunk | retain | | 24 | Hookers willow | Salix hookeriana | 13 | 13 | 20 | fair | fair | failed into wetland | retain | | 25 | red alder | Alnus rubra | 10 | 10 | 10 | pood | fair | significant lean west | remove | # Attachment 3 - Tree Inventory # Attachment 3 | Tree No. | Common Name | Scientific Name | DBH ¹ | Single
DBH ² | C-Rad ³ | Condition ⁴ | Structure | Comments | Treatment | |------------|---------------------|--|------------------|----------------------------|--------------------|---|--------------|---|-----------| | 26 | Hookers willow | Salix scouleriana | 9 | 9 | 9 | fair | poor | fallen over | retain | | 27 | Pacific willow | Salix lucida | 11,6,5 | 13 | 15 | fair | poor | fallen over | retain | | 28 | Scoulers willow | Salix scouleriana | 9 | 9 | 7 | poor | poor | fallen over, covered with ivy | remove | | 59 | Scoulers willow | Salix scouleriana | 8,7,5,4 | 12 | 12 | poor | poor | fallen over | retain | | 30 | Hookers willow | Salix hookeriana | 9,7,4 | 12 | 15 | poor | poor | fallen over | remove | | 31 | Hookers willow | Salix hookeriana | 9′2 | 6 | 8 | poor | poor | partially failed, top dieback | remove | | 32 | Hookers willow | Salix hookeriana | 10,10,7 | 15 | 12 | poor | poor | fallen over, extensive ivy | remove | | 33 | Hookers willow | Salix hookeriana | 7 | 7 | 7 | poor | poor | fallen over | remove | | 34 | Hookers willow | Salix hookeriana | 6,3 | 6,3 | 12 | fair | fair | extreme lean towards site | remove | | 35 | red alder | Alnus rubra | 9 | 9 | 9 | poog | boog | | remove | | 36 | red alder | Alnus rubra | 10 | 10 | 12 | boog | fair | codominant at 5' with included bark | remove | | 37 | Pacific willow | Salix lucida | 11 | 11 | 10 | good | fair | one sided, significant epicormic growth | retain | | 10RH is th | o trink diameter in | 1 nBH is the trunk diameter in inches measured ner Interp | or Internatio | anal Socie | Ary of Ark | tional Society of Arboriculture (ISA) standards | A) ctandards | | | ^{&#}x27;DBH is the trunk diameter in inches measured per International Society of Arboriculture (ISA) standards. Single DBH is the trunk diameter of a multi-stem tree converted to a single number according to the following formula: square root of the sum of the squared diameter of each trunk at 4½ feet above mean ground level. ³C-Rad is the approximate crown radius in feet. ⁴Condition and Structure ratings range from very poor, poor, fair, to good. ### Attachment 4 Additional Tree Protection Recommendations The following recommendations are consistent with City of Cannon Beach Code requirements: #### **Before Construction Begins** - 1. Notify all contractors of tree protection procedures. For successful tree protection on a construction site, all contractors must know and understand the goals of tree protection. - a. Hold a tree protection meeting with all contractors to explain the goals of tree protection. - b. Have all contractors sign memoranda of understanding regarding the goals of tree protection. The memoranda should include a penalty for violating the tree protection plan. The penalty should equal the resulting fines issued by the local jurisdiction plus the appraised value of the tree(s) within the violated tree protection zone per the current Trunk Formula Method as outlined in the current edition of the *Guide for Plant Appraisal* by the Council of Tree & Landscape Appraisers. The penalty should be paid to the owner of the property. #### 2. Fencing - a. Trees to remain on site will be protected by installation of tree protection fencing as shown in Attachment 1. - b. Unless otherwise noted, the fencing should be put in place before the ground is cleared to protect the trees and the soil around the trees from disturbances. - c. Fencing should be established by the project arborist based on the needs of the trees to be protected and to facilitate construction. - d. Fencing should consist of 6-foot-high steel fencing on concrete blocks or 6-foot metal fencing secured to the ground with 8-foot metal posts to prevent it from being moved by contractors, sagging, or falling down. - e. Fencing should remain in the position that is established by the project arborist and not be moved without approval from the project arborist. #### 3. Signage a. All tree protection fencing
should have signage as follows so that all contractors understand the purpose of the fencing: #### TREE PROTECTION ZONE ## DO NOT REMOVE OR ADJUST THE LOCATION OF THIS TREE PROTECTION FENCING UNAUTHORIZED ENCROACHMENT MAY RESULT IN FINES Please contact the project arborist if alterations to the location of the tree protection fencing are necessary. Todd Prager, Project Arborist, Todd Prager & Associates, 971-295-4835 b. Signage should be placed every 75-feet or less. #### **During Construction** - 1. Protection Guidelines Within the Tree Protection Zones: - a. No new buildings; grade change or cut and fill, during or after construction; new impervious surfaces; or utility or drainage field placement should be allowed within the tree protection zones. - b. No traffic should be allowed within the tree protection zones. This includes but is not limited to vehicle, heavy equipment, or even repeated foot traffic. - c. No storage of materials including but not limiting to soil, construction material, or waste from the site should be permitted within the tree protection zones. Waste includes but is not limited to concrete wash out, gasoline, diesel, paint, cleaner, thinners, etc. - d. Construction trailers should not to be parked/placed within the tree protection zones. - e. No vehicles should be allowed to park within the tree protection zones. - f. No other activities should be allowed that will cause soil compaction within the tree protection zones. - 2. The trees should be protected from any cutting, skinning or breaking of branches, trunks or woody roots. - 3. The project arborist should be notified prior to the cutting of woody roots from trees that are to be retained to evaluate and oversee the proper cutting of roots with sharp cutting tools. Cut roots should be immediately covered with soil or mulch to prevent them from drying out. - 4. Trees that have woody roots cut should be provided supplemental water during the summer months. - 5. Any necessary passage of utilities through the tree protection zones should be by means of tunneling under woody roots by hand digging or boring with oversight by the project arborist. - 6. Any deviation from the recommendations in this section should receive prior approval from the project arborist. #### After Construction - 1. Carefully landscape the areas within the tree protection zones. Do not allow trenching for irrigation or other utilities within the tree protection zones. - 2. Carefully plant new plants within the tree protection zones. Avoid cutting the woody roots of trees that are retained. - 3. Do not install permanent irrigation within the tree protection zones unless it is drip irrigation to support a specific planting or the irrigation is approved by the project arborist. - 4. Provide adequate drainage within the tree protection zones and do not alter soil hydrology significantly from existing conditions for the trees to be retained. - 5. Provide for the ongoing inspection and treatment of insect and disease populations that can damage the retained trees and plants. - 6. The retained trees may need to be fertilized if recommended by the project arborist. - 7. Any deviation from the recommendations in this section should receive prior approval from the project arborist. ## Attachment 5 Assumptions and Limiting Conditions - 1. Any legal description provided to the consultant is assumed to be correct. The site plans and other information provided by Red Crow, LLC and their consultants was the basis of the information provided in this report. - 2. It is assumed that this property is not in violation of any codes, statutes, ordinances, or other governmental regulations. - 3. The consultant is not responsible for information gathered from others involved in various activities pertaining to this project. Care has been taken to obtain information from reliable sources. - 4. Loss or alteration of any part of this delivered report invalidates the entire report. - 5. Drawings and information contained in this report may not be to scale and are intended to be used as display points of reference only. - 6. The consultant's role is only to make recommendations. Inaction on the part of those receiving the report is not the responsibility of the consultant. - 7. The purpose of this report is to: - Provide an assessment and tag all trees over 6-inch DBH within and directly adjacent to the development site; and - Provide recommendations for the trees to be removed based on the proposed site plan along with protection recommendations for the trees to be retained. After recording, return to: City of Cannon Beach Attn: City Manager P.O. Box 368 Cannon Beach, Oregon 97110 Until a change is requested, All Tax Statements will be sent to: No Change Requested # **COMMUNITY HOUSING DEVELOPMENT AGREEMENT** | This Community Housing Development Agreement ("Development Agreement" or "Agreement") is made and is effective as of the date hereof ("Effective Date") by and between ("Developer") and the City of Cannon Beach, an Oregon municipal corporation ("City"). | |--| | RECITALS | | A. Developer is the owner of the certain real property located at, within the City of Cannon Beach, Clatsop County (the "Development") and described on attached Exhibit A. Developer intends to develop the property as an unit multi-family development. In an effort to encourage affordable housing in the City, the Developer has agreed to enter into this Development Agreement with City and to develop the Development for Community Housing pursuant to this Agreement. "Community Housing" is defined as long term rental units that do not exceed the Community Rental Rates listed in this Agreement. | | B. In order to assure compliance by Developer with the provisions of this Agreement, the Developer and City intend that the City shall have the right to approve any changes in the plans and specifications for the Development prepared by and dated("Plans and Specifications"), and to inspect the Development for compliance with this Agreement and the Plans and Specifications. | | NOW, THEREFORE, for consideration, the adequacy and sufficiency of which is hereby acknowledged, Developer and City agree as follows: | | 1. Incorporation of Recitals. | | The Recitals are incorporated herein as part of this Development Agreement. | | 2. Term and Termination | | A. This Development Agreement shall be in effect from the date of execution until the end of the thirty-year term, ending on, 2053, unless terminated earlier by either party, by giving written notice of termination to the other party. In the event this Agreement is terminated, either party shall, upon request of the other party, promptly execute and deliver to | - the requesting party a document evidencing the termination of this Agreement, which the requesting party may cause to be recorded in the Records of Clatsop County, Oregon. - B. If the Developer terminates the Agreement prior to expiration, the pro-rated value of the permits fees and system development charges listed in Table 2 below plus interest assessed at a rate of nine percent (9%) per annum will immediately become due and payable to the City. For example, if the Developer terminates this Agreement with 80 percent of the term of this Agreement remaining, then eighty percent (80%) of the permits fees and system development charges listed in Table 2, plus interest thereon at the rate of nine percent (9%) per annum would immediately become due and payable to the City. ### 3. Inspection and Retention of Records Developer agrees that City, or any agent designated by City, may at its discretion, inspect or perform an annual audit of the Community Rental Rates schedule and payments. Developer shall retain all financial records and supporting documents pertaining to the Community Units (defined below) for a minimum of three years after this Agreement terminates. ### 4. Community Housing; Plans and Specifications. The Developer agrees that all _____ units in the Development will be Community Housing. The Development shall be built in accordance with the Plans and Specifications. Any modifications to the Plans and Specifications (including, but not limited to, interior fixtures and finishes) or the Development are subject to the approval of the City, which approval shall not be delayed or withheld unreasonably. Specifically, Developer agrees to the following: One-bedroom One-bedroom One-bedroom One-bedroom Studio A. The Developer will build __ one-bedroom units, and ___ studio units ("Community Units") at the rent levels provided in Table 1 below and adjusted annually provided in (B)("Community Rental Rates"). Table 1: Preliminary Monthly Rent Levels Unit Monthly rent 101 One-bedroom \$1,198 102 One-bedroom \$1,198 103 Studio \$1,118 \$1,198 \$1,198 \$1,198 \$1,118 \$1,198 B. The Community Rental Rate levels in Table 1 are for the 2023 calendar year and will provide the baseline for subsequent rent levels, which will increase proportionally to the US Department of Housing and Urban Development's Area Median Income (AMI) levels for Clatsop County, which will be updated each year by HUD and applied each calendar year in January to provide the Community Rental Rate. 104 201 202 203 204 - C. The Community Rental Rates do not include utilities, such as water and sewer, electrical, phone, cable or any other service provided. - D. In exchange for
the above promises, the City will waive or refund the following permit fees and system development charges, shown below in Table 2. | Table 2: Building | Permit Fees | & Systems | Development | Charges | |-------------------|-------------|-----------|-------------|---------| | | | | | | | Base building permit fee | \$TBD | Building Official Fund | |---|-------|--------------------------------| | Local planning fee | \$TBD | Building Official Fund | | Structural plan review fee | \$TBD | Building Official Fund | | Fire/Life/Safety plan review fee | \$TBD | Building Official Fund | | State surcharge | \$TBD | Oregon Building Codes Division | | Affordable housing surcharge (commercial) | \$TBD | Affordable Housing Fund | | Subtotal | \$TBD | | | | | | | Water systems development charge | \$TBD | Water Fund | | Additional 2-inch water line | \$TBD | Water Fund | | Sewer systems development charge | \$TBD | Wastewater Fund | | Stormwater systems development charge | \$TBD | Storm Drain Fund | | Subtotal | \$TBD | | | | | | | Total | \$TBD | | - E. Other permits and fees required by the City but not listed above are not covered by this Agreement and are not waived. These permits include, but may not be limited to, plumbing permit, mechanical permit, fire alarm permit, fire sprinkler permit, and electrical permit. - F. The Community Units will be held to these conditions through thirty-year term of the agreement, whereby the terms of the Agreement will be met and the Developer will be free to rent the units as they wish. - G. The Community Units will remain as long-term rental units (rented for period s of thirty (30) days or longer) for the life of this Agreement. The Community Units will not be utilized as a Short-Term Rental or condominium or any other form of tenancy, other than long-term rental for the life of this Agreement. - H. If at any time prior to the thirty-year term of the agreement the Developer offers the Community Units for rent at rates higher than the Community Rental Rates or allows the Community Units to be used as other than long term rentals, the pro-rated value of the permit fees and system development charges listed in Table 2, plus interest assessed at a rate of nine percent (9%) per annum will immediately become due and payable to the City. ### 5. Building Permit. The City shall have the right to review the building permit application and all applications for amendment to the building permit for compliance with this Development Agreement. #### 6. Right of Inspection; Compliance. A. The City shall have the right to inspect the Development on a monthly basis during construction. B. In the event that the City determines that the Development is not being built as required by the Plans and Specification and this Agreement, the City shall promptly notify the Developer. Promptly upon receipt of notice from the City, Developer shall take such actions as may be necessary to put the Development back into compliance or seek waiver from City for the nonconforming elements. If the noncompliance is not corrected or approved within thirty (30) days after the City notice to Developer, then the City may withhold issuance of any certificates of occupancy on any portion of the Development. ### 7. Completion; Certificate of Occupancy. The Developer agrees that written evidence of the City's final approval of all of the foregoing elements of this Agreement must be provided as a condition to receipt of a certificate of occupancy for the Development. #### 8. Default and Dispute Resolution. A. In the event any party bound or affected by this Development Agreement initiates or defends any legal action or proceeding in any way connected with this Development Agreement, the prevailing party in any such action or proceeding, including any appeal, (in addition to any other relief which may be granted, whether legal or equitable), shall be entitled to recover from the losing party in any such action its reasonable costs and attorneys' fees (including, without limitation, its reasonable costs and attorneys' fees on any appeal). All such costs and attorneys' fees shall be deemed to have accrued on commencement of any legal action or proceeding and shall be enforceable whether or not such legal action or proceeding is prosecuted to judgment. B. Prior to the commencement of any legal action, the dissatisfied party shall first seek to resolve the dispute by negotiation. If negotiation is unsuccessful, the parties shall seek to mediate the dispute by using the services of a professional mediator with subject matter expertise and mutually acceptable to the parties. Costs of mediation shall be shared equally by the parties unless otherwise determined during the mediation. #### 9. Notices. All notices given pursuant to this Development Agreement shall be in writing and shall be given by personal service, by United States certified mail or by United States express mail or other established commercial express delivery service with signature confirmation required, postage or delivery charge prepaid, addressed to the appropriate party at the address set forth below. If a notice is delivered to Developer by personal service or by United States express mail or other established express delivery service such notice may be delivered to the Property. If a notice must be given to a person other than one designated below or otherwise sent to Developer, such notice shall be sent to the person and address shown on the then current real property tax rolls of City of Cannon Beach, Clatsop County, OR. All notices given to the appropriate party shall be sent to the address set forth below: To Developer: (the Developer) To City: City Manager City Hall, City of Cannon Beach P.O. Box 368 Cannon Beach, OR 97110 The person and address to which notices are to be given may be changed at any time by such party upon written notice to the other party. All notices given pursuant to this Agreement shall be deemed given upon receipt. For the purposes of this Section 9, the term "receipt" shall mean the earlier of any of the following: (i) the date of delivery of the notice or other document if hand delivered to the address specified pursuant to Section 9.1 as shown on the delivery document, (ii) three (3) days following deposit with the United States mail, or (iii) one (1) day following deposit with an established commercial express delivery service (such as FedEx). ### 10. Agreement Runs with the Land; Recorded with Clatsop County - A. Parties intend for this Agreement to run with the land. If at any point during the life of this Agreement, Developer sells, transfers, assigns or otherwise disposes of its interest in the Development, this Agreement will become binding on any successor(s) in interest. - B. Within ten (10) days of execution of this Agreement, Developer will record this Agreement with Clatsop County. #### 11. General Provisions. - A. **Savings Clause.** Whenever possible, each provision of this Development Agreement and any other related document shall be interpreted in such a manner as to be valid under applicable law; but if any provision of any of the foregoing shall be invalid or prohibited under said applicable law, such provisions shall be ineffective to the extent of such invalidity or prohibition without invalidating the remaining provisions of this Development Agreement or related document. - B. **Governing Law.** The laws of Oregon, without giving effect to its choice of law principles, govern all matters with respect to this Development Agreement, including all tort claims. - C. Amendments. This Development Agreement may only be amended by a written agreement that identifies itself as an amendment to this Development Agreement, is approved by and is signed by the Developer and the City. - D. **Headings.** Paragraph or section headings within this Development Agreement are inserted solely for convenience of reference, and are not intended to, and shall not govern, limit or aid in the construction of any terms or provisions contained herein. - E. Other Documents. The parties to this Development Agreement agree to execute such further documents and take such further actions as may be reasonably required to carry out the provisions and intent of this Development Agreement or any agreement or document relating hereto or entered into in connection herewith. Such further documents include, but are not limited to, (00649924; 1) Community Housing Development Agreement - affidavits and certifications required by the City to establish Developer's ongoing compliance with this Development Agreement. - F. **Non-wavier**. The failure of the City to insist upon strict performance of any terms, covenants or conditions of this Development Agreement shall not be deemed a waiver of any rights or remedies City may have, and shall not be deemed a waiver of any subsequent breach or default in the performance of any terms, covenants or conditions of this Development Agreement by the same or any other person or entity. A party for whose benefit a condition is inserted herein shall have the unilateral right to waive such condition. | ATTECT. | | |-----------------------|---| | ATTEST: | | | City of Cannon Beach: | | | By: Name: Title: | _ | | Developer: | | | Ву: Name:
Title: | _ | | STATE OF Oregon) | | |---|--| |) ss.
County of Clatsop) | | | The foregoing instrument was acknowledged | before me on, 202 by of the City of Cannon Beach, an | | Oregon municipal corporation. | or the oily of damien beach, an | | | Notary Public for | | | My Commission Expires: | | | | | | | | | | | STATE OF Oregon) | | |) ss. | | | County of Clatsop) | | | The foregoing instrument was acknowledged before many as as | | | us | × | | Notary Public for | | | My Commission Expires: | | # Exhibit A # **Property Legal
Description** ## 2022 -- Income Limits for LIHTC & Tax-Exempt Bonds # Clatsop County, Oregon For more detailed MTSP income limit information, please visit HUDs website: http://www.huduser.org/portal/datasets/mtsp.html | Actual 2022 Median ³ | \$79,800 | | |---------------------------------|----------|---| | 2022 HERA Special Median | \$80,200 | (applies to projects in existence before January 1, 2009) | Median Incomes calculated based on a 4-person household # What Income Limit Should You Use? Is the location considered RURAL by USDA? (if yes, it is eligible to use the Ntnl Non-Metro Median for 9% projects)¹ YES Clatsop County is considered Rural. To verify current accuracy, please visit: http://eligibility.sc.egov.usda.gov/eligibility/welcomeAction.do?pageAction=sfp&NavKey=property@12 --The following income limits indicate the highest income limit allowable-- | Did the project exist ² in 2008? | Use: HERA Special 2022 | | |---|--------------------------|--------------------------| | If NO, did it exist ² : | 4% Tax Credit Project | 9% Tax Credit Project | | Between 1/1/09 -4/17/2022 | Use: Actual Incomes 2022 | Use: Actual Incomes 2022 | | On or After 4/18/2022 | Use: Actual Incomes 2022 | Use: Actual Incomes 2022 | | | Actual Income Limits 2022 | | | | | | | | | | |-------|---------------------------|----------|----------|----------|----------|----------|----------|----------|--|--| | % MFI | 1 Pers | 2 Pers | 3 Pers | 4 Pers | 5 Pers | 6 Pers | 7 Pers | 8 Pers | | | | 30% | \$16,770 | \$19,170 | \$21,570 | \$23,940 | \$25,860 | \$27,780 | \$29,700 | \$31,620 | | | | 35% | \$19,565 | \$22,365 | \$25,165 | \$27,930 | \$30,170 | \$32,410 | \$34,650 | \$36,890 | | | | 40% | \$22,360 | \$25,560 | \$28,760 | \$31,920 | \$34,480 | \$37,040 | \$39,600 | \$42,160 | | | | 45% | \$25,155 | \$28,755 | \$32,355 | \$35,910 | \$38,790 | \$41,670 | \$44,550 | \$47,430 | | | | 50% | \$27,950 | \$31,950 | \$35,950 | \$39,900 | \$43,100 | \$46,300 | \$49,500 | \$52,700 | | | | 55% | \$30,745 | \$35,145 | \$39,545 | \$43,890 | \$47,410 | \$50,930 | \$54,450 | \$57,970 | | | | 60% | \$33,540 | \$38,340 | \$43,140 | \$47,880 | \$51,720 | \$55,560 | \$59,400 | \$63,240 | | | | 80% | \$44,720 | \$51,120 | \$57,520 | \$63,840 | \$68,960 | \$74,080 | \$79,200 | \$84,320 | | | | | HERA Special Income Limits 2022 | | | | | | | | | | | |-------|---------------------------------|----------|----------|----------|----------|-----------|----------|----------|--|--|--| | % MFI | 1 Pers | 2 Pers | 3 Pers | 4 Pers | 5 Pers | 6 Pers | 7 Pers | 8 Pers | | | | | 30% | \$16,860 | \$19,260 | \$21,660 | \$24,060 | \$26,010 | \$27,930 | \$29,850 | \$31,770 | | | | | 35% | \$19,670 | \$22,470 | \$25,270 | \$28,070 | \$30,345 | \$32,585 | \$34,825 | \$37,065 | | | | | 40% | \$22,480 | \$25,680 | \$28,880 | \$32,080 | \$34,680 | \$37,240 | \$39,800 | \$42,360 | | | | | 45% | \$25,290 | \$28,890 | \$32,490 | \$36,090 | \$39,015 | \$41,895 | \$44,775 | \$47,655 | | | | | 50% | \$28,100 | \$32,100 | \$36,100 | \$40,100 | \$43,350 | \$46,550 | \$49,750 | \$52,950 | | | | | 55% | \$30,910 | \$35,310 | \$39,710 | \$44,110 | \$47,685 | \$51,205 | \$54,725 | \$58,245 | | | | | 60% | \$33,720 | \$38,520 | \$43,320 | \$48,120 | \$52,020 | \$55,860 | \$59,700 | \$63,540 | | | | | 80% | \$44,960 | \$51,360 | \$57,760 | \$64,160 | \$69,360 | _\$74,480 | \$79,600 | \$84,720 | | | | ### Notes: 1: Only projects in Rural Areas are able to use the Non-Metro Medians, otherwise use applicable 4% limits. Projects with previous "Rural" designations that are no longer considered to be located in rural areas (by the USDA) are permitted to use the previous year's National Non-Metro income limits should they be higher than the current year's income limits. The National Non-Metro income limits are online here: http://www.oregon.gov/ohcs/pages/research-income-rent-limits.aspx - 2: Exist defined by OHCS as the project's placed-in-service (PIS) date. Projects consisting of multiple buildings, where each building is being treated as part of a multiple building project (see line 8b on IRS Form 8609), will be considered as being "in existence" provided at least one building was PIS during the affected year. - 3: Actual Median Income Limit indicated here is based on income limits though it is not necessarily the HUD Area Median Income The incomes limits listed above are based on the Multifamily Tax Subsidy Program (MTSP) income limits published by HUD on April 18, 2022. Per Revenue Ruling 94-57, owners will have until June 1, 2022 to implement these new MTSP income limits (45 days from their effective date). Please note that all definitions and explanations herein may be subject to change upon later IRS and/or HUD clarification. # 2022 -- Rents for LIHTC & Tax-Exempt Bonds # Clatsop County, Oregon For more detailed MTSP income limit information, please visit HUDs website: http://www.huduser.org/portal/datasets/mtsp.html | Actual 2022 Median ³ | \$79,800 | | |---------------------------------|----------|---| | 2022 HERA Special Median | \$80,200 | (applies to projects in existence before January 1, 2009) | Median Incomes calculated based on a 4-person household # What Rents Should You Use? Is the location considered RURAL by USDA? (if yes, it is eligible to use the Ntnl Non-Metro Median for 9% projects)¹ YES Clatsop County is considered Rural. To verify current accuracy, please visit: http://eligibility.sc.egov.usda.gov/eligibility/welcomeAction.do?pageAction=sfp&NavKey=property@12 -- The following rent limits indicate the highest rents allowable-- Did the project exist² in 2008? Use: HERA Special 2022 If NO, did it exist²: -- 4% Tax Credit Project -- 9% Tax Credit Project Between 1/1/09 -4/17/2022 Use: Actual Incomes 2022 Use: Actual Incomes 2022 On or After 4/18/2022 Use: Actual Incomes 2022 Use: Actual Incomes 2022 | | Rents based on Actual Income Limits 2022 | | | | | | | | | | | |-------|--|---------|---------|---------|---------|---------|---------|--|--|--|--| | % MFI | 75% of 0 Bdrm | 0 Bdrm | 1 Bdrm | 2 Bdrm | 3 Bdrm | 4 Bdrm | 5 Bdrm | | | | | | 30% | \$314 | \$419 | \$449 | \$539 | \$622 | \$694 | \$766 | | | | | | 35% | \$366 | \$489 | \$524 | \$629 | \$726 | \$810 | \$894 | | | | | | 40% | \$419 | \$559 | \$599 | \$719 | \$830 | \$926 | \$1,022 | | | | | | 45% | \$471 | \$628 | \$673 | \$808 | \$933 | \$1,041 | \$1,149 | | | | | | 50% | \$523 | \$698 | \$748 | \$898 | \$1,037 | \$1,157 | \$1,277 | | | | | | 55% | \$576 | \$768 | \$823 | \$988 | \$1,141 | \$1,273 | \$1,405 | | | | | | 60% | \$628 | \$838 | \$898 | \$1,078 | \$1,245 | \$1,389 | \$1,533 | | | | | | 80% | \$838 | \$1,118 | \$1,198 | \$1,438 | \$1,660 | \$1,852 | \$2,044 | | | | | | | Rents based on HERA Special Income Limits 2022 | | | | | | | | | | | |-------|--|---------|---------|---------|---------|---------|---------|--|--|--|--| | % MFI | 75% of 0 Bdrm | 0 Bdrm | 1 Bdrm | 2 Bdrm | 3 Bdrm | 4 Bdrm | 5 Bdrm | | | | | | 30% | \$315 | \$421 | \$451 | \$541 | \$625 | \$698 | \$770 | | | | | | 35% | \$368 | \$491 | \$526 | \$631 | \$730 | \$814 | \$898 | | | | | | 40% | \$421 | \$562 | \$602 | \$722 | \$834 | \$931 | \$1,027 | | | | | | 45% | \$474 | \$632 | \$677 | \$812 | \$938 | \$1,047 | \$1,155 | | | | | | 50% | \$526 | \$702 | \$752 | \$902 | \$1,043 | \$1,163 | \$1,283 | | | | | | 55% | \$579 | \$772 | \$827 | \$992 | \$1,147 | \$1,280 | \$1,412 | | | | | | 60% | \$632 | \$843 | \$903 | \$1,083 | \$1,251 | \$1,396 | \$1,540 | | | | | | 80% | \$843 | \$1,124 | \$1,204 | \$1,444 | \$1,669 | \$1,862 | \$2,054 | | | | | # Notes: 1: Only projects in Rural Areas are able to use the Non-Metro Medians, otherwise use applicable 4% limits. Projects with previous "Rural" designations that are no longer considered to be located in rural areas (by the USDA) are permitted to use the previous year's National Non-Metro income limits should they be higher than the current year's income limits. The National Non-Metro income limits are online here: http://www.oregon.gov/ohcs/pages/research-income-rent-limits.aspx - 2: Exist defined by OHCS as the project's placed-in-service (PIS) date. Projects consisting of multiple buildings, where each building is being treated as part of a multiple building project (see line 8b on IRS Form 8609), will be considered as being "in existence" provided at least one building was PIS during the affected year. - 3: Actual Median Income Limit indicated here is based on income limits though it is not necessarily the HUD Area Median Income The rent limits listed above are based on the Multifamily Tax Subsidy Program (MTSP) income limits published by HUD on April 18, 2022. Per Revenue Ruling 94-57, owners will have until June 1, 2022 to implement these new MTSP rent limits (45 days from their effective date). If the gross rent floors (established at credit allocation or the project's PIS date; refer to Revenue Procedure 94-57) are higher than the current rent limits, the gross rent floors may be used. However, income limits are still based on the current applicable rate. Utility allowances must continue to be deducted from rents to achieve the maximum tenant rents allowed. Please note that all definitions and explanations herein may be subject to change upon later IRS and/or HUD clarification. October 6, 2022 Cannon Beach Planning Commission, Cannon Beach, OR Re: CD # 22-01 and CU #22-03, application of David Pietka (Davidspruce LLC) for development on First and Spruce Streets Via email: Jeff Adams: adams@ci.cannon-beach.or.us Katie Hillenhagen: hillenhagen@ci.cannon-beach.or.us Dear Chair Newton and Cannon Beach Planning Commission, Oregon Coast Alliance is an Oregon nonprofit corporation with a
mission of protecting coastal natural resources and working to increase community livability. We write you a second time with concerns for the application by David Pietka (Davidspruce LLC) for a development on First and Spruce Streets. This is a complex application, and there continue to be unanswered questions. In this brief letter we reiterate some of the questions that need to be answered. Presentation of a Tree Report, and additional geotechnical information, to the decision-makers is very helpful in some, but not all, of the policy questions raised thus far. - 1. Wetlands are not just wet places on the surface of the ground; they have extensive underground or surface water sources that feed the area and provide the water for the wetland to remain healthy. Does this proposal protect the water sources of the wetland, as well as the wetland itself? - 2. The revised geotechnical report notes succinctly, "We anticipate shallow groundwater across the subject property." (See p. 13). This is probably related to the fact that much of the area is a wetland but there is no discussion of how to protect the wetland and its water sources, only instructions concerning dewatering of the construction site. P.O. Box 857 Astoria, OR 97103 (503) 391-0210 www.oregoncoastalliance.org - 3. Conditional Use standard 17.80.110 (A) requires the planning commission to determine if a demand exists for the use **at the proposed location**. There does not seem to be any indication in the project materials that the proposed residential use at this site is appropriate for a commercial area, or would in any way consist of affordable/workforce housing. What guarantees does the planning commission have, or could it get, that if housing is an appropriate use on this site, it would be affordable, other than the developer's statement? - 4. Conditional Use Standard 17.80.110 (F) requires the use to be compatible with the surrounding area. Proposing a largely residential development in a commercial area, on a site zoned for commercial uses, raises questions about compatibility of uses that the planning commission needs to visit in detail. Commercial uses in a concentrated commercial zone are important, and need to be protected from intrusive residential buildings, whose residents have very different needs for quiet, limited traffic and walkability from those that pertain to a commercially zoned area. Thank you for the opportunity to testify again in this matter. Please place this testimony into the record for this application. Sincerely, /s/ Cameron La Follette Cameron La Follette P.O. Box 857 Astoria, OR 97103 (503) 391-0210 www.oregoncoastalliance.org P.O. Box 857 Astoria, OR 97103 (503) 391-0210 www.oregoncoastalliance.org ### October 6, 2022 ## To the Planning Commission: Today, October 2, the day I write these words, is Mahatma Gandhi"s birthday. Often quoted are his words "The greatness of a nation and its moral progress can be judged by the way its animals are treated." I believe this with all my heart. I also believe this principle can be applied to the way the land is treated. As Lacy M. Johnson says in her article entitled "Sanctuary" in Orion magazine, "A forest of trees is more than the place where they grow-it's a community of countless generations of thousands of species, each playing its essential part. A community has a value that no one should own." This too, I believe. Perhaps the bit of forest and wetland that we are concerned with here is small in comparison to an actual forest, nevertheless it is still a community of beings which deserve to live their lives as they have for generations. Not very scientific, I know, but I speak from my heart. I hope with all my being that you will consider these words in making your decision. Every wetland is precious precisely because there are so few left in Cannon Beach. Yes, we need more places for people to live, work force housing and low income housing particularly. But our wetlands are already home to many equally precious lives. What confidence have we that the homes crammed onto this small piece of land will be used for such purposes? In looking at the design plan, it appears more units have been added than were in the original design, for a total of 11 units. Based on the total number of bedrooms in the units, occupancy could range from approximately 17 residents to 29 residents, depending on how many people actually occupy the units. This is a rough estimation, since we don't know if the number of units will change in a subsequent plan. It concerns me to add this many more individuals to an area of "very poorly drained soil...within a severe earthquake hazard zone, a severe Cascadia subduction zone and a high liquefaction hazard zone." This from the Geotechnical Investigation Report, Earth Engineers,Inc., Jacqui Boyer Geotechnical Engineering Associate, revised April 18, 2022. Assuming the worst were to happen and Cannon Beach experiences the expected Cascadia subduction zone earthquake, I don't see how the resident of the ADA could possible escape to higher ground, considering that even if the building survives the quake in some form, the infrastructure outside the building will not, making escape difficult, if not impossible. In actuality, in an event of this severity, it seems unlikely that any of the residents of these units could survive, considering the liquefaction and subsidence of the ground in this location, making escape impossible. Would you want this on your conscience? If you should ignore this possibility and these units are built, I am also concerned by the geotechnical recommendation that the required fill be extended beyond the exterior perimeter of the building by at least five feet. "The site grading plan should be developed to provide rapid drainage of surface water away from the perimeter of the building and beneath the floor slab." The grades should be sloped away from the building area." I see on the plan a berm along the edge of the build line which to me means a built-up area, not a slope, presumably to protect the wetland. Protect it from what? Does this mean that after the units are built it is no longer a concern that drainage of surface water should be directed away from the foundation? Seems like the berm would prevent water from running off the property and would instead make it collect next to the foundation. I am confused by this apparent conflict. There also seem to be a lot of "ifs" in the arborist report regarding tree removal, risk assessment, grading impacts, foundations and tree protection zones, root pruning, crown pruning, etc. The safety of the twenty-three trees which won't initially be removed seems very "iffy" indeed. Also, the removal of this many trees (14) means that many fewer root systems to take up water, increasing the risk of flooding at the site. Of the trees to be removed, six are judged to be in "good" condition, while nine of the retained trees are only in fair condition, and one is in poor condition leaving only thirteen of the retained trees in good condition. This leads me to believe the lives of the ten trees in fair or poor condition may not be long at all. It seems a shame to remove six trees in good condition. No doubt that will greatly affect the condition of the remaining trees, since they rely heavily on each other for support and aid in times of sickness or insect attack, etc. They communicate with each other just as other species do, through the mycelium network in the soil. I could go on, but think I will stop here. As Mayor Sam says in "Message from the Mayor", "staff provide the baseline and Residents present the emotional value." You have heard mine-I hope you can feel it in your own heart, too.